Sub-Microliter Injection System

$130.00
Order code
VAR-3167

Includes the smallest dead volume microinjection when the 10 µL syringe is used with WPI needles 34-36 g

  • Smallest dead volume microinjection syringe
  • Biologically compatible injection syringe
  • Various needle sizes available: 26g, 33-36g
  • Blunt or beveled needles
  • Compatible with WPI's UMP3 microinjection system
  • NANOFIL includes a 1CC syringe and (2) MF28G Microfil 28g needles for back filling the syringe. (These parts are not inculded with the NANOFIL-100)

Click here to view the current NanoFil Data Sheet.

Options

Order code Size Includes

NANOFIL

10μL

- one 26 gauge needle mounted to the microliter syringe

- 2 - MF28G MicroFil, 1 - 1CC syringe

NANOFIL-100

100µL

- one 26 gauge needle mounted to the microliter syringe 

Benefits

  • Very low dead volume injections (0.5 µL or less)
  • Biologically compatible injection syringe (All the seals are constructed of inert materials for better chemical and biological compatiblity
  • Switching the syringe tip during an experiment is easy
  • Variety of tips
  • Unique tri-beveled needles for easier penetration

Applications

  • Animal research
  • Capillary electrophoresis
  • Versatile research applications — Retinal Pigment Epithelial (RPE) and Intra Ocular (IO) injection kits

NanoFil™ is a specially designed 10 µL syringe developed in response to customer requests for improved microinjection in mice and other small animals. It makes quantitative nanoliter injection much easier and more accurate than any other method currently in use.

Low Dead Volume

NanoFil's low dead volume eliminates the need for oil backfilling, a messy process which risks contamination of the injected sample. Injection is now simpler, and less messy, and there is no possibility of oil contamination in critical applications such as ophthalmology research (see the Retinal Pigment Epithelial (RPE) and Intra Ocular (IO) injection kits listed below).

Easily Switch Syringe Tip

When the inner tip diameter of a conventional syringe is reduced to less than 100 µm, it is very difficult to front fill the solution at a reasonable speed. NanoFil solves this problem by using a tip coupling mechanism that makes it possible to change the syringe tip during the experiment. Simply load the sample using a larger tip, such as the 26 gauge needle provided with the microliter syringe, and then replace it with a micro tip for sample injection. On a conventional 10 µL syringe, a solid ring or bushing is permanently bonded to the tubing. Replacing the tip in the middle of the experiment is not practical. With NanoFil, tips can be exchanged by a simple twist of the brass lock, gently pulling out the tip, and replacing with the desired new tip.

Holds Metal Tips and Quartz Tubing

To secure the tip, NanoFil uses an olive-shaped silicon gasket that is similar to, but much sturdier than, some of the microelectrode holders used for electrophysiology recording. The silicone gasket makes it possible to hold not only metal needles but also Silflex tubing. Many types of tubing can be easily connected to the syringe as long as the outer diameter (OD) is close to, but not more than, the barrel inner diameter (ID) of 460 µm. Flexible quartz capillaries used in Gas Chromotography (GC) and Capillary Electrophoresis (CE) can also be easily coupled to the syringe.

Variety of Tips

Specially designed needles as small as 36 gauge (110 µm OD) are offered in both blunt and beveled styles. Our studies have shown that these needles will cause less trauma to the tissue. NanoFil has a unique coupling mechanism that allows many different forms of small tubing and tips to be coupled with the syringe barrel.


More Information

How to select the correct tip for your application.

NanoFil for Microinjection

NanoFil-100 has a small dead volume.

The NanoFil-100 is a 100µL syringe with a small dead volume. 

NanoFIl is a 10uL syringe with small dead volume.

The NanoFil syringe is a 10µL syringe. NanoFil is a specially designed microliter syringe developed in response to customer requests for improved microinjection in mice and other small animals. It makes quantitative nanoliter injection much easier and more accurate than any other method currently in use. 


Using NanoFil™ in different configurations

Direct injection by hand

This is the simplest and most economical way to inject. Any of our tips can be inserted directly into the NanoFil™ microliter syringe. Even the SilFlex tubing can be inserted to switch from hand injection to the other methods listed below. This method is limited by the accuracy of plunger movement that is achievable with a human hand.

Installed on WPI’s UMP3 microsyringe pump

This will allow the user to achieve nanoliter resolution and reproducibility. For neural system injection, mount the UMP3 on a stereotaxic frame.

SilFlex tubing and holder

The needle is mounted on a small plastic holder that is connected to the NanoFil by a 35 cm length of flexible tubing. The NanoFil syringe is mounted on the UMP3 pump. This configuration allows the user to hold the animal in one hand and insert the needle with the other. When the needle reaches the desired location, activate the pump using the footswitch and the pre-programmed injection volume will be delivered. This configuration gives a nanoliter level of accuracy and reproducibility. It is best suited for applications such as the RPE and IO injection.

Chu-Tan, J. A., Fernando, N., Aggio-Bruce, R., Cioanca, A. V., Valter, K., Andronikou, N., … Natoli, R. (2020). A method for gene knockdown in the retina using a lipid-based carrier. Molecular Vision, 26, 48–63. Retrieved from http://www.molvis.org/molvis/v26/48

Calvo, E., Milla-navarro, S., Ortuño-lizarán, I., Gómez-vicente, V., Cuenca, N., De la Villa, P., & Germain, F. (2020). Article deleterious effect of nmda plus kainate on the inner retinal cells and ganglion cell projection of the mouse. International Journal of Molecular Sciences, 21(5). https://doi.org/10.3390/ijms21051570

Abdul Hamid, A. I., Nakusi, L., Givskov, M., Chang, Y. T., Marquès, C., & Gueirard, P. (2020). A mouse ear skin model to study the dynamics of innate immune responses against Staphylococcus aureus biofilms. BMC Microbiology, 20(1). https://doi.org/10.1186/s12866-019-1635-z

Tosi, U., Kommidi, H., Adeuyan, O., Guo, H., Maachani, U. B., Chen, N., … Souweidane, M. M. (2020). PET, image-guided HDAC inhibition of pediatric diffuse midline glioma improves survival in murine models. Science Advances, 6(30), eabb4105. https://doi.org/10.1126/sciadv.abb4105

Abolhasanpour, N., Hajebrahimi, S., Ebrahimi-Kalan, A., Mehdipour, A., & Salehi-Pourmehr, H. (2020, January 1). Urodynamic parameters in spinal cord injury-induced neurogenic bladder rats after stem cell transplantation: A narrative review. Iranian Journal of Medical Sciences. Shiraz University of Medical Sciences. https://doi.org/10.30476/ijms.2019.45318

Geng, X., Yanagida, K., Akwii, R. G., Choi, D., Chen, L., Ho, Y. C., … Srinivasan, R. S. (2020). S1PR1 regulates the quiescence of lymphatic vessels by inhibiting laminar shear stress-dependent VEGF-C signaling. JCI Insight, 5(14). https://doi.org/10.1172/jci.insight.137652

Weh, E., Lutrzykowska, Z., Smith, A., Hager, H., Pawar, M., Wubben, T. J., & Besirli, C. G. (2020). Hexokinase 2 is dispensable for photoreceptor development but is required for survival during aging and outer retinal stress. Cell Death & Disease, 11(6), 422. https://doi.org/10.1038/s41419-020-2638-2

Vigouroux, R. J., César, Q., Chédotal, A., & Nguyen-Ba-Charvet, K. T. (2020). Revisiting the role of DCC in visual system development with a novel eye clearing method. ELife, 9. https://doi.org/10.7554/eLife.51275

Baracchi, D., Cabirol, A., Devaud, J. M., Haase, A., d’Ettorre, P., & Giurfa, M. (2020). Pheromone components affect motivation and induce persistent modulation of associative learning and memory in honey bees. Communications Biology, 3(1). https://doi.org/10.1038/s42003-020-01183-x

Ross, B. X., Choi, J., Yao, J., Hager, H. M., Abcouwer, S. F., & Zacks, D. N. (2020). Loss of high-mobility group box 1 (HMGB1) protein in rods accelerates rod photoreceptor degeneration after retinal detachment. Investigative Ophthalmology and Visual Science, 61(5). https://doi.org/10.1167/IOVS.61.5.50

Feola, A. J., Sherwood, J. M., Pardue, M. T., Overby, D. R., & Ethier, C. R. (2020). Age and menopause effects on ocular compliance and aqueous outflow. Investigative Ophthalmology and Visual Science, 61(5). https://doi.org/10.1167/IOVS.61.5.16

Puścian, A., Benisty, H., & Higley, M. J. (2020). NMDAR-Dependent Emergence of Behavioral Representation in Primary Visual Cortex. Cell Reports, 32(4), 107970. https://doi.org/10.1016/j.celrep.2020.107970

Zhang, S., & Morales, M. (2019). Ultrastructural Detection of Neuronal Markers, Receptors, and Vesicular Transporters. Current Protocols in Neuroscience, 88(1), e70. https://doi.org/10.1002/cpns.70

Zhao, C., Boles, N. C., Miller, J. D., Kawola, S., Temple, S., Davis, R. J., & Stern, J. H. (2017). Development of a refined protocol for trans-scleral subretinal transplantation of human retinal pigment epithelial cells into rat eyes. Journal of Visualized Experiments, 2017(126), e55220. https://doi.org/10.3791/55220

Lin, P., Fang, Z., Liu, J., & Lee, J. H. (2016). Optogenetic Functional MRI. Journal of Visualized Experiments, (110), e53346–e53346. http://doi.org/10.3791/53346 

Mac-Daniel, L., Buckwalter, M. R., Gueirard, P., & Ménard, R. (2016). Myeloid Cell Isolation from Mouse Skin and Draining Lymph Node Following Intradermal Immunization with Live Attenuated <em>Plasmodium</em> Sporozoites. Journal of Visualized Experiments, (111), e53796–e53796. http://doi.org/10.3791/53796 

Song, H., Park, J.-Y., Kim, H.-S., Lee, M.-C., Kim, Y., & Kim, H.-I. (2016). Circumscribed Capsular Infarct Modeling Using a Photothrombotic Technique. Journal of Visualized Experiments, (112), e53281–e53281. http://doi.org/10.3791/53281 

Arriaga, G., Macopson, J. J., & Jarvis, E. D. (2015). Transsynaptic Tracing from Peripheral Targets with Pseudorabies Virus Followed by Cholera Toxin and Biotinylated Dextran Amines Double Labeling. Journal of Visualized Experiments, (103), e50672–e50672. http://doi.org/10.3791/50672 

Puccini, J. M., Marker, D. F., Fitzgerald, T., Barbieri, J., Kim, C. S., Miller-Rhodes, P., … Gelbard, H. A. (2015). Leucine-rich repeat kinase 2 modulates neuroinflammation and neurotoxicity in models of human immunodeficiency virus 1-associated neurocognitive disorders. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 35(13), 5271–83. http://doi.org/10.1523/JNEUROSCI.0650-14.2015 

Mittelman-Smith, M. A., Krajewski-Hall, S. J., McMullen, N. T., & Rance, N. E. (2015). Neurokinin 3 Receptor-Expressing Neurons in the Median Preoptic Nucleus Modulate Heat-Dissipation Effectors in the Female Rat. Endocrinology, 156(7), 2552–62. http://doi.org/10.1210/en.2014-1974 

Dai, D., Kadirvel, R., Rezek, I., Ding, Y.-H., Lingineni, R., & Kallmes, D. (2015). Elastase-induced intracranial dolichoectasia model in mice. Neurosurgery, 76(3), 337–43; discussion 343. http://doi.org/10.1227/NEU.0000000000000615 

Delotterie, D. F., Mathis, C., Cassel, J.-C., Rosenbrock, H., Dorner-Ciossek, C., & Marti, A. (2015). Touchscreen tasks in mice to demonstrate differences between hippocampal and striatal functions. Neurobiology of Learning and Memory, 120, 16–27. http://doi.org/10.1016/j.nlm.2015.02.007 

Saito, T. (Ed.). (2015). Electroporation Methods in Neuroscience (Vol. 102). New York, NY: Springer New York. http://doi.org/10.1007/978-1-4939-2459-2 

Han, Z., Banworth, M. J., Makkia, R., Conley, S. M., Al-Ubaidi, M. R., Cooper, M. J., & Naash, M. I. (2015). Genomic DNA nanoparticles rescue rhodopsin-associated retinitis pigmentosa phenotype. FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology, 29(6), 2535–44. http://doi.org/10.1096/fj.15-270363 

Yamaguchi, T., Qi, J., Wang, H.-L., Zhang, S., & Morales, M. (2015). Glutamatergic and dopaminergic neurons in the mouse ventral tegmental area. European Journal of Neuroscience, 41(6), 760–772. http://doi.org/10.1111/ejn.12818 

Park, S. W., Kim, J. H., Park, W. J., & Kim, J. H. (2015). Limbal Approach-Subretinal Injection of Viral Vectors for Gene Therapy in Mice Retinal Pigment Epithelium. Journal of Visualized Experiments, (102), e53030–e53030. http://doi.org/10.3791/53030 

Hollis, E. R., Ishiko, N., Tolentino, K., Doherty, E., Rodriguez, M. J., Calcutt, N. A., & Zou, Y. (2015). A novel and robust conditioning lesion induced by ethidium bromide. Experimental Neurology, 265, 30–9. http://doi.org/10.1016/j.expneurol.2014.12.004 

Rossmiller, B. P., Ryals, R. C., & Lewin, A. S. (2015). Gene therapy to rescue retinal degeneration caused by mutations in rhodopsin. Methods in Molecular Biology (Clifton, N.J.), 1271, 391–410. http://doi.org/10.1007/978-1-4939-2330-4_25 

Adelson, J. D., Sapp, R. W., Brott, B. K., Lee, H., Miyamichi, K., Luo, L., … Shatz, C. J. (2014). Developmental  Sculpting of Intracortical Circuits by MHC Class I H2-Db and H2-Kb. Cerebral Cortex (New York, N.Y. : 1991). http://doi.org/10.1093/cercor/bhu243 

Ameri, H., Liu, H., Liu, R., Ha, Y., Paulucci-Holthauzen, A. A., Hu, S., … Zhang, W. (2014). TWEAK/Fn14 pathway is a novel mediator of retinal neovascularization. Investigative Ophthalmology & Visual Science, 55(2), 801–13. http://doi.org/10.1167/iovs.13-12812 

Cai, X., Seal, S., & McGinnis, J. F. (2014). Sustained inhibition of neovascularization in vldlr-/- mice following intravitreal injection of cerium oxide nanoparticles and the role of the ASK1-P38/JNK-NF-κB pathway. Biomaterials, 35(1), 249–58. http://doi.org/10.1016/j.biomaterials.2013.10.022 

Crittenden, J. R., Lacey, C. J., Lee, T., Bowden, H. A., & Graybiel, A. M. (2014). Severe drug-induced repetitive behaviors and striatal overexpression of VAChT in ChAT-ChR2-EYFP BAC transgenic mice. Frontiers in Neural Circuits, 8, 57. http://doi.org/10.3389/fncir.2014.00057 

Evans, M. S., Chaurette, J. P., Adams, S. T., Reddy, G. R., Paley, M. A., Aronin, N., … Miller, S. C. (2014). A synthetic luciferin improves bioluminescence imaging in live mice. Nature Methods, 11(4), 393–5. http://doi.org/10.1038/nmeth.2839 

Havekes, R., Bruinenberg, V. M., Tudor, J. C., Ferri, S. L., Baumann, A., Meerlo, P., & Abel, T. (2014). Transiently Increasing cAMP Levels Selectively in Hippocampal Excitatory Neurons during Sleep Deprivation Prevents Memory Deficits Caused by Sleep Loss. Journal of Neuroscience, 34(47), 15715–15721. http://doi.org/10.1523/JNEUROSCI.2403-14.2014 

Formaglio, P., Tavares, J., Ménard, R., & Amino, R. (2014). Loss of host cell plasma membrane integrity following cell traversal by Plasmodium sporozoites in the skin. Parasitology International, 63(1), 237–44. http://doi.org/10.1016/j.parint.2013.07.009 

Horn, C. C., Meyers, K., Lim, A., Dye, M., Pak, D., Rinaman, L., & Yates, B. J. (2014). Delineation of vagal emetic pathways: intragastric copper sulfate-induced emesis and viral tract tracing in musk shrews. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 306(5), R341-51. http://doi.org/10.1152/ajpregu.00413.2013 

Iyer, S. M., Montgomery, K. L., Towne, C., Lee, S. Y., Ramakrishnan, C., Deisseroth, K., & Delp, S. L. (2014). Virally mediated optogenetic excitation and inhibition of pain in freely moving nontransgenic mice. Nature Biotechnology, 32(3), 274–8. http://doi.org/10.1038/nbt.2834 

Kwon, S., Agollah, G. D., Wu, G., & Sevick-Muraca, E. M. (2014). Spatio-temporal changes of lymphatic contractility and drainage patterns following lymphadenectomy in mice. PloS One, 9(8), e106034. http://doi.org/10.1371/journal.pone.0106034 

Mac-Daniel, L., Buckwalter, M. R., Berthet, M., Virk, Y., Yui, K., Albert, M. L., … Ménard, R. (2014). Local immune response to injection of Plasmodium sporozoites into the skin. Journal of Immunology (Baltimore, Md. : 1950), 193(3), 1246–57. http://doi.org/10.4049/jimmunol.1302669 

Magableh, A., & Lundy, R. (2014). Somatostatin and Corticotrophin Releasing Hormone Cell Types Are a Major Source of Descending Input From the Forebrain to the Parabrachial Nucleus in Mice. Chemical Senses, 39(8), 673–682. http://doi.org/10.1093/chemse/bju038 

Lim, T. K. Y., Shi, X. Q., Martin, H. C., Huang, H., Luheshi, G., Rivest, S., & Zhang, J. (2014). Blood-nerve barrier dysfunction contributes to the generation of neuropathic pain and allows targeting of injured nerves for pain relief. Pain, 155(5), 954–67. http://doi.org/10.1016/j.pain.2014.01.026 

Park, C. Y., Zhou, E. H., Tambe, D., Chen, B., Lavoie, T., Dowell, M., … Krishnan, R. (2014). High-throughput screening for modulators of cellular contractile force. Biological Physics; Quantitative Methods; Tissues and Organs. Retrieved from http://arxiv.org/abs/1411.5695 

Swaminathan, S. S., Oh, D.-J., Kang, M. H., Shepard, A. R., Pang, I.-H., Rhee, D. J., … L, J. J. (2014). TGF-β2-mediated ocular hypertension is attenuated in SPARC-null mice. Investigative Ophthalmology & Visual Science, 55(7), 4084–97. http://doi.org/10.1167/iovs.13-12463 

Michael, I. P. I., Westenskow, P. P. D., Hacibekiroglu, S., Greenwald, A. C., Ballios, B. B. G., Kurihara, T., … Gertsenstein, M. (2014). Local acting Sticky-trap inhibits vascular endothelial growth factor dependent pathological angiogenesis in the eye. EMBO Molecular Medicine, 6(5), 604–23. http://doi.org/10.1002/emmm.201303708 

Matsumoto, H., Kataoka, K., Tsoka, P., Connor, K. M., Miller, J. W., & Vavvas, D. G. (2014). Strain difference in photoreceptor cell death after retinal detachment in mice. Investigative Ophthalmology & Visual Science, 55(7), 4165–74. http://doi.org/10.1167/iovs.14-14238 

Paveliev, M., Kislin, M., Molotkov, D., Yuryev, M., Rauvala, H., & Khiroug, L. (2014). Acute Brain Trauma in Mice Followed By Longitudinal Two-photon Imaging. Journal of Visualized Experiments : JoVE, (April), 1–8. http://doi.org/10.3791/51559 

Tokunaga, C. C., Mitton, K. P., Dailey, W., Massoll, C., Roumayah, K., Guzman, E., … Drenser, K. A. (2014). Effects of anti-VEGF treatment on the recovery of the developing retina following oxygen-induced retinopathy. Investigative Ophthalmology & Visual Science, 55(3), 1884–92. http://doi.org/10.1167/iovs.13-13397 

Rangel, A., Race, B., Phillips, K., Striebel, J. J., Kurtz, N., Chesebro, B., … Nicoll, J. (2014). Distinct patterns of spread of prion infection in brains of mice expressing anchorless or anchored forms of prion protein. Acta Neuropathologica Communications, 2(1), 8. http://doi.org/10.1186/2051-5960-2-8 

Oswald, M. J., Tantirigama, M. L. S., Sonntag, I., Hughes, S. M., & Empson, R. M. (2013). Diversity of layer 5 projection neurons in the mouse motor cortex. Frontiers in Cellular Neuroscience, 7. http://doi.org/10.3389/fncel.2013.00174 

Swaminathan, S. S., Oh, D.-J., Kang, M. H., Ren, R., Jin, R., Gong, H., … JC, M. (2013). Secreted protein acidic and rich in cysteine (SPARC)-null mice exhibit more uniform outflow. Investigative Ophthalmology & Visual Science, 54(3), 2035–47. http://doi.org/10.1167/iovs.12-10950 

van Gorp, S., Leerink, M., Kakinohana, O., Platoshyn, O., Santucci, C., Galik, J., … Marsala, M. (2013). Amelioration of motor/sensory dysfunction and spasticity in a rat model of acute lumbar spinal cord injury by human neural stem cell transplantation. Stem Cell Research & Therapy, 4(3), 57. http://doi.org/10.1186/scrt209 

Rodrigues, M., Xin, X., Jee, K., Babapoor-Farrokhran, S., Kashiwabuchi, F., Ma, T., … Sodhi, A. (2013). VEGF Secreted by Hypoxic Muller Cells Induces MMP-2 Expression and Activity in Endothelial Cells to Promote Retinal Neovascularization in Proliferative Diabetic Retinopathy. Diabetes, 62(11), 3863–3873. http://doi.org/10.2337/db13-0014 

Kwon, S., Agollah, G. D., Wu, G., Chan, W., & Sevick-Muraca, E. M. (2013). Direct visualization of changes of lymphatic function and drainage pathways in lymph node metastasis of B16F10 melanoma using near-infrared fluorescence imaging. Biomedical Optics Express, 4(6), 967–77. http://doi.org/10.1364/BOE.4.000967 

Hewing, N. J., Weskamp, G., Vermaat, J., Farage, E., Glomski, K., Swendeman, S., … Blobel, C. P. (2013). Intravitreal injection of TIMP3 or the EGFR inhibitor erlotinib offers protection from oxygen-induced retinopathy in mice. Investigative Ophthalmology & Visual Science, 54(1), 864–70. http://doi.org/10.1167/iovs.12-10954 

Goel, M., Sienkiewicz, A. E., Picciani, R., Wang, J., Lee, R. K., & Bhattacharya, S. K. (2012). Cochlin, intraocular pressure regulation and mechanosensing. PloS One, 7(4), e34309. http://doi.org/10.1371/journal.pone.0034309 

Heitz, F. D., Erb, M., Anklin, C., Robay, D., Pernet, V., Gueven, N., … Lambert, W. (2012). Idebenone Protects against Retinal Damage and Loss of Vision in a Mouse Model of Leber’s Hereditary Optic Neuropathy. PLoS ONE, 7(9), e45182. http://doi.org/10.1371/journal.pone.0045182 

Nickerson, J. M., Goodman, P., Chrenek, M. A., Bernal, C. J., Berglin, L., Redmond, T. M., & Boatright, J. H. (2012). Subretinal delivery and electroporation in pigmented and nonpigmented adult mouse eyes. Methods in Molecular Biology (Clifton, N.J.), 884, 53–69. http://doi.org/10.1007/978-1-61779-848-1_4 

Gibson, D. A., & Ma, L. (2011). Mosaic Analysis of Gene Function in Postnatal Mouse Brain Development by Using Virus-based Cre Recombination. Journal of Visualized Experiments, (54), e2823–e2823. http://doi.org/10.3791/2823 

Kim, J., Woo, J., Park, Y.-G., Chae, S., Jo, S., Choi, J. W., … Kim, D. (2011). Thalamic T-type Ca2+ channels mediate frontal lobe dysfunctions caused by a hypoxia-like damage in the prefrontal cortex. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 31(11), 4063–73. http://doi.org/10.1523/JNEUROSCI.4493-10.2011 

Zhu, Q., Sun, W., Okano, K., Chen, Y., Zhang, N., Maeda, T., & Palczewski, K. (2011). Sponge Transgenic Mouse Model Reveals Important Roles for the MicroRNA-183 (miR-183)/96/182 Cluster in Postmitotic Photoreceptors of e Retina * □ S. http://doi.org/10.1074/jbc.M111.259028 

Stamer, W. D., Lei, Y., Boussommier-Calleja, A., Overby, D. R., Ethier, C. R., RF, B., … M, A. (2011). eNOS, a Pressure-Dependent Regulator of Intraocular Pressure. Investigative Opthalmology & Visual Science, 52(13), 9438. http://doi.org/10.1167/iovs.11-7839 

Rocha, E. M., Di Pasquale, G., Riveros, P. P., Quinn, K., Handelman, B., Chiorini, J. A., … Z, Z. (2011). Transduction, Tropism, and Biodistribution of AAV Vectors in the Lacrimal Gland. Investigative Opthalmology & Visual Science, 52(13), 9567. http://doi.org/10.1167/iovs.11-8171 

Lei, Y., Overby, D. R., Boussommier-Calleja, A., Stamer, W. D., Ethier, C. R., RF, B., … JC, M. (2011). Outflow Physiology of the Mouse Eye: Pressure Dependence and Washout. Investigative Opthalmology & Visual Science, 52(3), 1865. http://doi.org/10.1167/iovs.10-6019 

Gueirard, P., Tavares, J., Thiberge, S., Bernex, F., Ishino, T., Milon, G., … Amino, R. (2010). Development of the malaria parasite in the skin of the mammalian host. Proceedings of the National Academy of Sciences of the United States of America, 107(43), 18640–5. http://doi.org/10.1073/pnas.1009346107 

Coremans, V., Ahmed, T., Balschun, D., D’Hooge, R., DeVriese, A., Cremer, J., … Conway, E. M. (2010). Impaired neurogenesis, learning and memory and low seizure threshold associated with loss of neural precursor cell survivin. BMC Neuroscience, 11(1), 2. http://doi.org/10.1186/1471-2202-11-2 

Sheehy, N. T., Cordes, K. R., White, M. P., Ivey, K. N., & Srivastava, D. (2010). The neural crest-enriched microRNA miR-452 regulates epithelial-mesenchymal signaling in the first pharyngeal arch. Development, 137(24).

Mojumder, D. K., Concepcion, F. A., Patel, S. K., Barkmeier, A. J., Carvounis, P. E., Wilson, J. H., … Wensel, T. G. (2010). Evaluating retinal toxicity of intravitreal caspofungin in the mouse eye. Investigative Ophthalmology & Visual Science, 51(11), 5796–803. http://doi.org/10.1167/iovs.10-5541 

Marker, D. F., Tremblay, M.-E., Lu, S.-M., Majewska, A. K., & Gelbard, H. A. (2010). A Thin-skull Window Technique for Chronic Two-photon <em>In vivo</em> Imaging of Murine Microglia in Models of Neuroinflammation. Journal of Visualized Experiments, (43), e2059–e2059. http://doi.org/10.3791/2059 

Molotkov, D. A., Yukin, A. Y., Afzalov, R. A., & Khiroug, L. S. (2010). Gene Delivery to Postnatal Rat Brain by Non-ventricular Plasmid Injection and Electroporation. Journal of Visualized Experiments, (43), e2244–e2244. http://doi.org/10.3791/2244 

Voza, T., Kebaier, C., Vanderberg, J. P. J., Nussenzweig, R., Vanderberg, J. P. J., Most, H., … Vanderberg, J. P. J. (2010). Intradermal immunization of mice with radiation-attenuated sporozoites of Plasmodium yoelii induces effective protective immunity. Malaria Journal, 9(1), 362. http://doi.org/10.1186/1475-2875-9-362 

Kinkel, M. D., Eames, S. C., Philipson, L. H., & Prince, V. E. (2010). Intraperitoneal injection into adult zebrafish. Journal of Visualized Experiments : JoVE, (42), e2126. http://doi.org/10.3791/2126 

Gerrikagoitia, I., & Martínez-Millán, L. (2009). Guanosine-Induced Synaptogenesis in the Adult Brain In Vivo. The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology, 292(12), 1968–1975. http://doi.org/10.1002/ar.20999 

Gerrikagoitia, I., & Martínez-Millán, L. (2009). Guanosine-induced synaptogenesis in the adult brain in vivo. Anatomical Record (Hoboken, N.J. : 2007), 292(12), 1968–75. http://doi.org/10.1002/ar.20999 

Zhao, B., Allinson, S. L., Ma, A., Bentley, A. J., Martin, F. L., & Fullwood, N. J. (2008). Targeted Cornea Limbal Stem/Progenitor Cell Transfection in an Organ Culture Model. Investigative Opthalmology & Visual Science, 49(8), 3395. http://doi.org/10.1167/iovs.07-1263 

Konopatskaya, O., Churchill, A. J., Harper, S. J., Bates, D. O., & Gardiner, T. A. (2006). VEGF165b, an endogenous C-terminal splice variant of VEGF, inhibits retinal neovascularization in mice. Molecular Vision, 12, 626–32. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/16735996 

Piltti, K. M., Salazar, D. L., Uchida, N., Cummings, B. J., & Anderson, A. J. (n.d.). Safety of Epicenter Versus Intact Parenchyma as a Transplantation Site for Human Neural Stem Cells for Spinal Cord Injury Therapy. http://doi.org/10.5966/sctm.2012-0110 

Ventura, R. E., & Goldman, J. E. (n.d.). Dorsal Radial Glia Generate Olfactory Bulb Interneurons in the Postnatal Murine Brain. http://doi.org/10.1523/JNEUROSCI.0399-07.2007 

_. (n.d.). http://doi.org/10.1242/dev.052647 

More Choices:
  1. NanoFil Needles
    NanoFil Needles
    Multiple SKUs
    $94.00
  2. 26g Beveled Replacement NanoFil needles
    26g Beveled Replacement NanoFil needles
    NF26BV-2
    $54.00
  3. NanoFil Injection Holder
    NanoFil Injection Holder
    NFINHLD
    $163.00
  4. 34g Flexible Quartz Tubing for filling
    34g Flexible Quartz Tubing for filling
    NFQ34-5
    $171.00
  5. Nanofil Application Kits
    Nanofil Application Kits
    Multiple SKUs
    $626.00
  6. SilFlex tubing
    SilFlex tubing
    SILFLEX-2
    $270.00

In the video below, you can see how to front fill an Nanofil syringe. 


 

We found other products you might like!
Frequently Purchased
©Copyright 2020. World Precision Instruments. All rights reserved.

Apply for Tax Exempt Status
WPI collects tax in AL, AZ, CA, CO, CT, DC, FL, GA, IL, IN, MA, ME, MD, MI, MN, MO, NC, NV, NJ, NY, OH, OK, PA, SC, TN, TX, VA, VT, WA and WI