Sub-Microliter Injection System

Order code

Smallest dead volume microinjection system
(10 µL syringe, 34-36 g needles)

  • Smallest dead volume microinjection syringe
  • Biologically compatible injection syringe
  • Various needle sizes available: 26g, 33-36g
  • Blunt or beveled needles
  • Compatible with WPI's UMP3 microinjection system
  • NANOFIL includes a 1CC syringe and (2) MF28G Microfil 28g needles for back filling the syringe. (These parts are not inculded with the NANOFIL-100)


Need to Conserve Precious Sample?

Try NanoFil™ Low Dead Volume Syringes

NanoFil™ Syringes are 10 µL and 100 μL syringes for low volume injections. It makes quantitative nanoliter injection much easier and more accurate than any other method currently in use. When you must conserve your sample, NanoFil is your solution.


neuroscienceophthalmologyviral injectionsCapillary Electrophoresis


Special Applications

ultramicropump with rpe kit

  • Retinal Pigment Epithelium Injection
  • Mouse Brain Injection

  • Intravitreal Injection (with RPE-KIT)

  • Intraoccular Injection (with IO-KIT)


Application kits are used exclusively with a NanoFil™ syringe and UMP3 to achieve accurate and repeatable oil free injections down to sub-microliter ranges. The Silflex tubing is a very important component of the kit. This 35 cm long, flexible tubing has a precise outer diameter for an airtight fitting with the syringe. It also has a small inner diameter to minimize dead volume. The SilFlex is coupled to the injection tip with a seal system similar to that of the NanoFil. The dead volume of the entire kit (including the tubing) is less than 3 microliters. 


The NanoFil syringe and needles are uniquely designed for microliter injections in ophthalmology, neuroscience and other research applications. See the difference for yourself!


Who Is WPI?

With over 50 years in the business of serving scientists and researchers, you can trust us.


WPI Metrics


Click here to view the current NanoFil Data Sheet.


Order code Size Includes



- one 26 gauge needle mounted to the microliter syringe

- 2 - MF28G MicroFil, 1 - 1CC syringe



- one 26 gauge needle mounted to the microliter syringe 


  • Very low dead volume injections (0.5 µL or less)
  • Biologically compatible injection syringe (All the seals are constructed of inert materials for better chemical and biological compatiblity
  • Switching the syringe tip during an experiment is easy
  • Variety of tips
  • Unique tri-beveled needles for easier penetration


  • Animal research
  • Capillary electrophoresis
  • Versatile research applications — Retinal Pigment Epithelial (RPE) and Intra Ocular (IO) injection kits

NanoFil™ is a specially designed 10 µL syringe developed in response to customer requests for improved microinjection in mice and other small animals. It makes quantitative nanoliter injection much easier and more accurate than any other method currently in use.

Low Dead Volume

NanoFil's low dead volume eliminates the need for oil backfilling, a messy process which risks contamination of the injected sample. Injection is now simpler, and less messy, and there is no possibility of oil contamination in critical applications such as ophthalmology research (see the Retinal Pigment Epithelial (RPE) and Intra Ocular (IO) injection kits listed below).

Easily Switch Syringe Tip

When the inner tip diameter of a conventional syringe is reduced to less than 100 µm, it is very difficult to front fill the solution at a reasonable speed. NanoFil solves this problem by using a tip coupling mechanism that makes it possible to change the syringe tip during the experiment. Simply load the sample using a larger tip, such as the 26 gauge needle provided with the microliter syringe, and then replace it with a micro tip for sample injection. On a conventional 10 µL syringe, a solid ring or bushing is permanently bonded to the tubing. Replacing the tip in the middle of the experiment is not practical. With NanoFil, tips can be exchanged by a simple twist of the brass lock, gently pulling out the tip, and replacing with the desired new tip.

Holds Metal Tips and Quartz Tubing

To secure the tip, NanoFil uses an olive-shaped silicon gasket that is similar to, but much sturdier than, some of the microelectrode holders used for electrophysiology recording. The silicone gasket makes it possible to hold not only metal needles but also Silflex tubing. Many types of tubing can be easily connected to the syringe as long as the outer diameter (OD) is close to, but not more than, the barrel inner diameter (ID) of 460 µm. Flexible quartz capillaries used in Gas Chromotography (GC) and Capillary Electrophoresis (CE) can also be easily coupled to the syringe.

Variety of Tips

Specially designed needles as small as 36 gauge (110 µm OD) are offered in both blunt and beveled styles. Our studies have shown that these needles will cause less trauma to the tissue. NanoFil has a unique coupling mechanism that allows many different forms of small tubing and tips to be coupled with the syringe barrel.

More Information

How to select the correct tip for your application.

NanoFil for Microinjection

NanoFil-100 has a small dead volume.

The NanoFil-100 is a 100µL syringe with a small dead volume. 

NanoFIl is a 10uL syringe with small dead volume.

The NanoFil syringe is a 10µL syringe. NanoFil is a specially designed microliter syringe developed in response to customer requests for improved microinjection in mice and other small animals. It makes quantitative nanoliter injection much easier and more accurate than any other method currently in use. 

Using NanoFil™ in different configurations

Direct injection by hand

This is the simplest and most economical way to inject. Any of our tips can be inserted directly into the NanoFil™ microliter syringe. Even the SilFlex tubing can be inserted to switch from hand injection to the other methods listed below. This method is limited by the accuracy of plunger movement that is achievable with a human hand.

Installed on WPI’s UMP3 microsyringe pump

This will allow the user to achieve nanoliter resolution and reproducibility. For neural system injection, mount the UMP3 on a stereotaxic frame.

SilFlex tubing and holder

The needle is mounted on a small plastic holder that is connected to the NanoFil by a 35 cm length of flexible tubing. The NanoFil syringe is mounted on the UMP3 pump. This configuration allows the user to hold the animal in one hand and insert the needle with the other. When the needle reaches the desired location, activate the pump using the footswitch and the pre-programmed injection volume will be delivered. This configuration gives a nanoliter level of accuracy and reproducibility. It is best suited for applications such as the RPE and IO injection.

Chu-Tan, J. A., Fernando, N., Aggio-Bruce, R., Cioanca, A. V., Valter, K., Andronikou, N., … Natoli, R. (2020). A method for gene knockdown in the retina using a lipid-based carrier. Molecular Vision, 26, 48–63. Retrieved from

Calvo, E., Milla-navarro, S., Ortuño-lizarán, I., Gómez-vicente, V., Cuenca, N., De la Villa, P., & Germain, F. (2020). Article deleterious effect of nmda plus kainate on the inner retinal cells and ganglion cell projection of the mouse. International Journal of Molecular Sciences, 21(5).

Abdul Hamid, A. I., Nakusi, L., Givskov, M., Chang, Y. T., Marquès, C., & Gueirard, P. (2020). A mouse ear skin model to study the dynamics of innate immune responses against Staphylococcus aureus biofilms. BMC Microbiology, 20(1).

Tosi, U., Kommidi, H., Adeuyan, O., Guo, H., Maachani, U. B., Chen, N., … Souweidane, M. M. (2020). PET, image-guided HDAC inhibition of pediatric diffuse midline glioma improves survival in murine models. Science Advances, 6(30), eabb4105.

Abolhasanpour, N., Hajebrahimi, S., Ebrahimi-Kalan, A., Mehdipour, A., & Salehi-Pourmehr, H. (2020, January 1). Urodynamic parameters in spinal cord injury-induced neurogenic bladder rats after stem cell transplantation: A narrative review. Iranian Journal of Medical Sciences. Shiraz University of Medical Sciences.

Geng, X., Yanagida, K., Akwii, R. G., Choi, D., Chen, L., Ho, Y. C., … Srinivasan, R. S. (2020). S1PR1 regulates the quiescence of lymphatic vessels by inhibiting laminar shear stress-dependent VEGF-C signaling. JCI Insight, 5(14).

Weh, E., Lutrzykowska, Z., Smith, A., Hager, H., Pawar, M., Wubben, T. J., & Besirli, C. G. (2020). Hexokinase 2 is dispensable for photoreceptor development but is required for survival during aging and outer retinal stress. Cell Death & Disease, 11(6), 422.

Vigouroux, R. J., César, Q., Chédotal, A., & Nguyen-Ba-Charvet, K. T. (2020). Revisiting the role of DCC in visual system development with a novel eye clearing method. ELife, 9.

Baracchi, D., Cabirol, A., Devaud, J. M., Haase, A., d’Ettorre, P., & Giurfa, M. (2020). Pheromone components affect motivation and induce persistent modulation of associative learning and memory in honey bees. Communications Biology, 3(1).

Ross, B. X., Choi, J., Yao, J., Hager, H. M., Abcouwer, S. F., & Zacks, D. N. (2020). Loss of high-mobility group box 1 (HMGB1) protein in rods accelerates rod photoreceptor degeneration after retinal detachment. Investigative Ophthalmology and Visual Science, 61(5).

Feola, A. J., Sherwood, J. M., Pardue, M. T., Overby, D. R., & Ethier, C. R. (2020). Age and menopause effects on ocular compliance and aqueous outflow. Investigative Ophthalmology and Visual Science, 61(5).

Puścian, A., Benisty, H., & Higley, M. J. (2020). NMDAR-Dependent Emergence of Behavioral Representation in Primary Visual Cortex. Cell Reports, 32(4), 107970.

Zhang, S., & Morales, M. (2019). Ultrastructural Detection of Neuronal Markers, Receptors, and Vesicular Transporters. Current Protocols in Neuroscience, 88(1), e70.

Zhao, C., Boles, N. C., Miller, J. D., Kawola, S., Temple, S., Davis, R. J., & Stern, J. H. (2017). Development of a refined protocol for trans-scleral subretinal transplantation of human retinal pigment epithelial cells into rat eyes. Journal of Visualized Experiments, 2017(126), e55220.

Lin, P., Fang, Z., Liu, J., & Lee, J. H. (2016). Optogenetic Functional MRI. Journal of Visualized Experiments, (110), e53346–e53346. 

Mac-Daniel, L., Buckwalter, M. R., Gueirard, P., & Ménard, R. (2016). Myeloid Cell Isolation from Mouse Skin and Draining Lymph Node Following Intradermal Immunization with Live Attenuated <em>Plasmodium</em> Sporozoites. Journal of Visualized Experiments, (111), e53796–e53796. 

Song, H., Park, J.-Y., Kim, H.-S., Lee, M.-C., Kim, Y., & Kim, H.-I. (2016). Circumscribed Capsular Infarct Modeling Using a Photothrombotic Technique. Journal of Visualized Experiments, (112), e53281–e53281. 

Arriaga, G., Macopson, J. J., & Jarvis, E. D. (2015). Transsynaptic Tracing from Peripheral Targets with Pseudorabies Virus Followed by Cholera Toxin and Biotinylated Dextran Amines Double Labeling. Journal of Visualized Experiments, (103), e50672–e50672. 

Puccini, J. M., Marker, D. F., Fitzgerald, T., Barbieri, J., Kim, C. S., Miller-Rhodes, P., … Gelbard, H. A. (2015). Leucine-rich repeat kinase 2 modulates neuroinflammation and neurotoxicity in models of human immunodeficiency virus 1-associated neurocognitive disorders. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 35(13), 5271–83. 

Mittelman-Smith, M. A., Krajewski-Hall, S. J., McMullen, N. T., & Rance, N. E. (2015). Neurokinin 3 Receptor-Expressing Neurons in the Median Preoptic Nucleus Modulate Heat-Dissipation Effectors in the Female Rat. Endocrinology, 156(7), 2552–62. 

Dai, D., Kadirvel, R., Rezek, I., Ding, Y.-H., Lingineni, R., & Kallmes, D. (2015). Elastase-induced intracranial dolichoectasia model in mice. Neurosurgery, 76(3), 337–43; discussion 343. 

Delotterie, D. F., Mathis, C., Cassel, J.-C., Rosenbrock, H., Dorner-Ciossek, C., & Marti, A. (2015). Touchscreen tasks in mice to demonstrate differences between hippocampal and striatal functions. Neurobiology of Learning and Memory, 120, 16–27. 

Saito, T. (Ed.). (2015). Electroporation Methods in Neuroscience (Vol. 102). New York, NY: Springer New York. 

Han, Z., Banworth, M. J., Makkia, R., Conley, S. M., Al-Ubaidi, M. R., Cooper, M. J., & Naash, M. I. (2015). Genomic DNA nanoparticles rescue rhodopsin-associated retinitis pigmentosa phenotype. FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology, 29(6), 2535–44. 

Yamaguchi, T., Qi, J., Wang, H.-L., Zhang, S., & Morales, M. (2015). Glutamatergic and dopaminergic neurons in the mouse ventral tegmental area. European Journal of Neuroscience, 41(6), 760–772. 

Park, S. W., Kim, J. H., Park, W. J., & Kim, J. H. (2015). Limbal Approach-Subretinal Injection of Viral Vectors for Gene Therapy in Mice Retinal Pigment Epithelium. Journal of Visualized Experiments, (102), e53030–e53030. 

Hollis, E. R., Ishiko, N., Tolentino, K., Doherty, E., Rodriguez, M. J., Calcutt, N. A., & Zou, Y. (2015). A novel and robust conditioning lesion induced by ethidium bromide. Experimental Neurology, 265, 30–9. 

Rossmiller, B. P., Ryals, R. C., & Lewin, A. S. (2015). Gene therapy to rescue retinal degeneration caused by mutations in rhodopsin. Methods in Molecular Biology (Clifton, N.J.), 1271, 391–410. 

Adelson, J. D., Sapp, R. W., Brott, B. K., Lee, H., Miyamichi, K., Luo, L., … Shatz, C. J. (2014). Developmental  Sculpting of Intracortical Circuits by MHC Class I H2-Db and H2-Kb. Cerebral Cortex (New York, N.Y. : 1991). 

Ameri, H., Liu, H., Liu, R., Ha, Y., Paulucci-Holthauzen, A. A., Hu, S., … Zhang, W. (2014). TWEAK/Fn14 pathway is a novel mediator of retinal neovascularization. Investigative Ophthalmology & Visual Science, 55(2), 801–13. 

Cai, X., Seal, S., & McGinnis, J. F. (2014). Sustained inhibition of neovascularization in vldlr-/- mice following intravitreal injection of cerium oxide nanoparticles and the role of the ASK1-P38/JNK-NF-κB pathway. Biomaterials, 35(1), 249–58. 

Crittenden, J. R., Lacey, C. J., Lee, T., Bowden, H. A., & Graybiel, A. M. (2014). Severe drug-induced repetitive behaviors and striatal overexpression of VAChT in ChAT-ChR2-EYFP BAC transgenic mice. Frontiers in Neural Circuits, 8, 57. 

Evans, M. S., Chaurette, J. P., Adams, S. T., Reddy, G. R., Paley, M. A., Aronin, N., … Miller, S. C. (2014). A synthetic luciferin improves bioluminescence imaging in live mice. Nature Methods, 11(4), 393–5. 

Havekes, R., Bruinenberg, V. M., Tudor, J. C., Ferri, S. L., Baumann, A., Meerlo, P., & Abel, T. (2014). Transiently Increasing cAMP Levels Selectively in Hippocampal Excitatory Neurons during Sleep Deprivation Prevents Memory Deficits Caused by Sleep Loss. Journal of Neuroscience, 34(47), 15715–15721. 

Formaglio, P., Tavares, J., Ménard, R., & Amino, R. (2014). Loss of host cell plasma membrane integrity following cell traversal by Plasmodium sporozoites in the skin. Parasitology International, 63(1), 237–44. 

Horn, C. C., Meyers, K., Lim, A., Dye, M., Pak, D., Rinaman, L., & Yates, B. J. (2014). Delineation of vagal emetic pathways: intragastric copper sulfate-induced emesis and viral tract tracing in musk shrews. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 306(5), R341-51. 

Iyer, S. M., Montgomery, K. L., Towne, C., Lee, S. Y., Ramakrishnan, C., Deisseroth, K., & Delp, S. L. (2014). Virally mediated optogenetic excitation and inhibition of pain in freely moving nontransgenic mice. Nature Biotechnology, 32(3), 274–8. 

Kwon, S., Agollah, G. D., Wu, G., & Sevick-Muraca, E. M. (2014). Spatio-temporal changes of lymphatic contractility and drainage patterns following lymphadenectomy in mice. PloS One, 9(8), e106034. 

Mac-Daniel, L., Buckwalter, M. R., Berthet, M., Virk, Y., Yui, K., Albert, M. L., … Ménard, R. (2014). Local immune response to injection of Plasmodium sporozoites into the skin. Journal of Immunology (Baltimore, Md. : 1950), 193(3), 1246–57. 

Magableh, A., & Lundy, R. (2014). Somatostatin and Corticotrophin Releasing Hormone Cell Types Are a Major Source of Descending Input From the Forebrain to the Parabrachial Nucleus in Mice. Chemical Senses, 39(8), 673–682. 

Lim, T. K. Y., Shi, X. Q., Martin, H. C., Huang, H., Luheshi, G., Rivest, S., & Zhang, J. (2014). Blood-nerve barrier dysfunction contributes to the generation of neuropathic pain and allows targeting of injured nerves for pain relief. Pain, 155(5), 954–67. 

Park, C. Y., Zhou, E. H., Tambe, D., Chen, B., Lavoie, T., Dowell, M., … Krishnan, R. (2014). High-throughput screening for modulators of cellular contractile force. Biological Physics; Quantitative Methods; Tissues and Organs. Retrieved from 

Swaminathan, S. S., Oh, D.-J., Kang, M. H., Shepard, A. R., Pang, I.-H., Rhee, D. J., … L, J. J. (2014). TGF-β2-mediated ocular hypertension is attenuated in SPARC-null mice. Investigative Ophthalmology & Visual Science, 55(7), 4084–97. 

Michael, I. P. I., Westenskow, P. P. D., Hacibekiroglu, S., Greenwald, A. C., Ballios, B. B. G., Kurihara, T., … Gertsenstein, M. (2014). Local acting Sticky-trap inhibits vascular endothelial growth factor dependent pathological angiogenesis in the eye. EMBO Molecular Medicine, 6(5), 604–23. 

Matsumoto, H., Kataoka, K., Tsoka, P., Connor, K. M., Miller, J. W., & Vavvas, D. G. (2014). Strain difference in photoreceptor cell death after retinal detachment in mice. Investigative Ophthalmology & Visual Science, 55(7), 4165–74. 

Paveliev, M., Kislin, M., Molotkov, D., Yuryev, M., Rauvala, H., & Khiroug, L. (2014). Acute Brain Trauma in Mice Followed By Longitudinal Two-photon Imaging. Journal of Visualized Experiments : JoVE, (April), 1–8. 

Tokunaga, C. C., Mitton, K. P., Dailey, W., Massoll, C., Roumayah, K., Guzman, E., … Drenser, K. A. (2014). Effects of anti-VEGF treatment on the recovery of the developing retina following oxygen-induced retinopathy. Investigative Ophthalmology & Visual Science, 55(3), 1884–92. 

Rangel, A., Race, B., Phillips, K., Striebel, J. J., Kurtz, N., Chesebro, B., … Nicoll, J. (2014). Distinct patterns of spread of prion infection in brains of mice expressing anchorless or anchored forms of prion protein. Acta Neuropathologica Communications, 2(1), 8. 

Oswald, M. J., Tantirigama, M. L. S., Sonntag, I., Hughes, S. M., & Empson, R. M. (2013). Diversity of layer 5 projection neurons in the mouse motor cortex. Frontiers in Cellular Neuroscience, 7. 

Swaminathan, S. S., Oh, D.-J., Kang, M. H., Ren, R., Jin, R., Gong, H., … JC, M. (2013). Secreted protein acidic and rich in cysteine (SPARC)-null mice exhibit more uniform outflow. Investigative Ophthalmology & Visual Science, 54(3), 2035–47. 

van Gorp, S., Leerink, M., Kakinohana, O., Platoshyn, O., Santucci, C., Galik, J., … Marsala, M. (2013). Amelioration of motor/sensory dysfunction and spasticity in a rat model of acute lumbar spinal cord injury by human neural stem cell transplantation. Stem Cell Research & Therapy, 4(3), 57. 

Rodrigues, M., Xin, X., Jee, K., Babapoor-Farrokhran, S., Kashiwabuchi, F., Ma, T., … Sodhi, A. (2013). VEGF Secreted by Hypoxic Muller Cells Induces MMP-2 Expression and Activity in Endothelial Cells to Promote Retinal Neovascularization in Proliferative Diabetic Retinopathy. Diabetes, 62(11), 3863–3873. 

Kwon, S., Agollah, G. D., Wu, G., Chan, W., & Sevick-Muraca, E. M. (2013). Direct visualization of changes of lymphatic function and drainage pathways in lymph node metastasis of B16F10 melanoma using near-infrared fluorescence imaging. Biomedical Optics Express, 4(6), 967–77. 

Hewing, N. J., Weskamp, G., Vermaat, J., Farage, E., Glomski, K., Swendeman, S., … Blobel, C. P. (2013). Intravitreal injection of TIMP3 or the EGFR inhibitor erlotinib offers protection from oxygen-induced retinopathy in mice. Investigative Ophthalmology & Visual Science, 54(1), 864–70. 

Goel, M., Sienkiewicz, A. E., Picciani, R., Wang, J., Lee, R. K., & Bhattacharya, S. K. (2012). Cochlin, intraocular pressure regulation and mechanosensing. PloS One, 7(4), e34309. 

Heitz, F. D., Erb, M., Anklin, C., Robay, D., Pernet, V., Gueven, N., … Lambert, W. (2012). Idebenone Protects against Retinal Damage and Loss of Vision in a Mouse Model of Leber’s Hereditary Optic Neuropathy. PLoS ONE, 7(9), e45182. 

Nickerson, J. M., Goodman, P., Chrenek, M. A., Bernal, C. J., Berglin, L., Redmond, T. M., & Boatright, J. H. (2012). Subretinal delivery and electroporation in pigmented and nonpigmented adult mouse eyes. Methods in Molecular Biology (Clifton, N.J.), 884, 53–69. 

Gibson, D. A., & Ma, L. (2011). Mosaic Analysis of Gene Function in Postnatal Mouse Brain Development by Using Virus-based Cre Recombination. Journal of Visualized Experiments, (54), e2823–e2823. 

Kim, J., Woo, J., Park, Y.-G., Chae, S., Jo, S., Choi, J. W., … Kim, D. (2011). Thalamic T-type Ca2+ channels mediate frontal lobe dysfunctions caused by a hypoxia-like damage in the prefrontal cortex. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 31(11), 4063–73. 

Zhu, Q., Sun, W., Okano, K., Chen, Y., Zhang, N., Maeda, T., & Palczewski, K. (2011). Sponge Transgenic Mouse Model Reveals Important Roles for the MicroRNA-183 (miR-183)/96/182 Cluster in Postmitotic Photoreceptors of e Retina * □ S. 

Stamer, W. D., Lei, Y., Boussommier-Calleja, A., Overby, D. R., Ethier, C. R., RF, B., … M, A. (2011). eNOS, a Pressure-Dependent Regulator of Intraocular Pressure. Investigative Opthalmology & Visual Science, 52(13), 9438. 

Rocha, E. M., Di Pasquale, G., Riveros, P. P., Quinn, K., Handelman, B., Chiorini, J. A., … Z, Z. (2011). Transduction, Tropism, and Biodistribution of AAV Vectors in the Lacrimal Gland. Investigative Opthalmology & Visual Science, 52(13), 9567. 

Lei, Y., Overby, D. R., Boussommier-Calleja, A., Stamer, W. D., Ethier, C. R., RF, B., … JC, M. (2011). Outflow Physiology of the Mouse Eye: Pressure Dependence and Washout. Investigative Opthalmology & Visual Science, 52(3), 1865. 

Gueirard, P., Tavares, J., Thiberge, S., Bernex, F., Ishino, T., Milon, G., … Amino, R. (2010). Development of the malaria parasite in the skin of the mammalian host. Proceedings of the National Academy of Sciences of the United States of America, 107(43), 18640–5. 

Coremans, V., Ahmed, T., Balschun, D., D’Hooge, R., DeVriese, A., Cremer, J., … Conway, E. M. (2010). Impaired neurogenesis, learning and memory and low seizure threshold associated with loss of neural precursor cell survivin. BMC Neuroscience, 11(1), 2. 

Sheehy, N. T., Cordes, K. R., White, M. P., Ivey, K. N., & Srivastava, D. (2010). The neural crest-enriched microRNA miR-452 regulates epithelial-mesenchymal signaling in the first pharyngeal arch. Development, 137(24).

Mojumder, D. K., Concepcion, F. A., Patel, S. K., Barkmeier, A. J., Carvounis, P. E., Wilson, J. H., … Wensel, T. G. (2010). Evaluating retinal toxicity of intravitreal caspofungin in the mouse eye. Investigative Ophthalmology & Visual Science, 51(11), 5796–803. 

Marker, D. F., Tremblay, M.-E., Lu, S.-M., Majewska, A. K., & Gelbard, H. A. (2010). A Thin-skull Window Technique for Chronic Two-photon <em>In vivo</em> Imaging of Murine Microglia in Models of Neuroinflammation. Journal of Visualized Experiments, (43), e2059–e2059. 

Molotkov, D. A., Yukin, A. Y., Afzalov, R. A., & Khiroug, L. S. (2010). Gene Delivery to Postnatal Rat Brain by Non-ventricular Plasmid Injection and Electroporation. Journal of Visualized Experiments, (43), e2244–e2244. 

Voza, T., Kebaier, C., Vanderberg, J. P. J., Nussenzweig, R., Vanderberg, J. P. J., Most, H., … Vanderberg, J. P. J. (2010). Intradermal immunization of mice with radiation-attenuated sporozoites of Plasmodium yoelii induces effective protective immunity. Malaria Journal, 9(1), 362. 

Kinkel, M. D., Eames, S. C., Philipson, L. H., & Prince, V. E. (2010). Intraperitoneal injection into adult zebrafish. Journal of Visualized Experiments : JoVE, (42), e2126. 

Gerrikagoitia, I., & Martínez-Millán, L. (2009). Guanosine-Induced Synaptogenesis in the Adult Brain In Vivo. The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology, 292(12), 1968–1975. 

Gerrikagoitia, I., & Martínez-Millán, L. (2009). Guanosine-induced synaptogenesis in the adult brain in vivo. Anatomical Record (Hoboken, N.J. : 2007), 292(12), 1968–75. 

Zhao, B., Allinson, S. L., Ma, A., Bentley, A. J., Martin, F. L., & Fullwood, N. J. (2008). Targeted Cornea Limbal Stem/Progenitor Cell Transfection in an Organ Culture Model. Investigative Opthalmology & Visual Science, 49(8), 3395. 

Konopatskaya, O., Churchill, A. J., Harper, S. J., Bates, D. O., & Gardiner, T. A. (2006). VEGF165b, an endogenous C-terminal splice variant of VEGF, inhibits retinal neovascularization in mice. Molecular Vision, 12, 626–32. Retrieved from 

Piltti, K. M., Salazar, D. L., Uchida, N., Cummings, B. J., & Anderson, A. J. (n.d.). Safety of Epicenter Versus Intact Parenchyma as a Transplantation Site for Human Neural Stem Cells for Spinal Cord Injury Therapy. 

Ventura, R. E., & Goldman, J. E. (n.d.). Dorsal Radial Glia Generate Olfactory Bulb Interneurons in the Postnatal Murine Brain. 

_. (n.d.). 

More Choices:
  1. NanoFil Needles
    NanoFil Needles
    Multiple SKUs
  2. 26g Beveled Replacement NanoFil needles
    26g Beveled Replacement NanoFil needles
  3. NanoFil Injection Holder
    NanoFil Injection Holder
  4. 34g Flexible Quartz Tubing for filling
    34g Flexible Quartz Tubing for filling
  5. Nanofil Application Kits
    Nanofil Application Kits
    Multiple SKUs
  6. SilFlex tubing
    SilFlex tubing

In the video below, you can see how to front fill an Nanofil syringe. 


How to Choose the Correct NanoFil Tip Size for Microinjections



How to Use the NanoFil Syringe for Retinal Pigment Epithelial and Intraocular Injections



How to Install a NanoFil Syringe on an UltraMicroPump



How to Setup the NanoFil System for Making Injections



NanoFil Microliter Syringes for Accurate Microinjections


We found other products you might like!
©Copyright 2021. World Precision Instruments. All rights reserved.

Apply for Tax Exempt Status
WPI collects tax in AL, AZ, CA, CO, CT, DC, FL, GA, IL, IN, MA, ME, MD, MI, MN, MO, NC, NV, NJ, NY, OH, OK, PA, SC, TN, TX, VA, VT, WA and WI