Microinjection Tool Box

The system depicted includes components often favored by researchers: PV820 Pneumatic PicoPump, PUL-1000 Micropipette Puller, M4C stand, M3301R micromanipulator, 5430-XX PicoNozzle Kit with a μTip, PZMTIII microscope with optional lighted base with articulating mirror and optional PRO-300 HDS camera and view screen, E2XX micropipette storage jar, Z-MOLDS Microinjection and Transplantation Molds, 14003-G Vannas spring scissors, glass capillaries, 77020 glass tweezers and Fluorodish optical grade glass bottom culture dishes. Whatever your needs, WPI offers a range of equipment to fill your requirements. 

 Zebrafish Model Organism

Zebrafish (Danio Rerio) are rapidly gaining in popularity as bio-medical research subjects because of the ability to generate high resolution, in vivo images of the embryos. Zebrafish are easy to maintain and produce a large number of offspring. Additionally, the embryos have a nearly transparent skin, making their development easily visible. These fish are used for a variety of disciplines, including neuroscience, genetics and aging studies.

Empowering scientists with reliable instruments

Serving scientist for over 50 years, WPI offers a variety of instruments for Zebrafish microinjection including pumps, pipetters, microscopes and more. One of our most popular pumps for microinjection is the PV820 Pneumatic PicoPump.

The PV820 and PV830, Pneumatic PicoPumps, were designed to simplify intracellular injection. You get repeatable microinjection in volumes ranging from picoliters to nanoliters. PV820 offers eject and hold pressure. The hold pressure prevents backfilling of the pipette by capillary action. In addition, the PV830 also has vacuum pressure which allows you to securely hold a cell with one pipette while you inject it with another. The volume injected is controlled by the inside diameter of the glass tip, the pressure and the time.

WPI has a customizable Microinjection System with everything you need to get started. The basic system is shown here. Below you will find many options and accessories you may use to customize your system.

Options

You may customize your system using the following options:

MICROSCOPE

  • PZMIII Precision Stereo Zoom Microscope on Track Stand
  • PZMIV Precision Stereo Zoom on Track Stand
  • 504928 LED Lighted Microscope Stand, 12.5"
  • 504929 LED Lighted Microsccope Stand, 10.5"
  • 504596 Halogen Lighted Microscope Stand

INJECTOR

MANIPULATOR

  • M3301 Manual Micromanipulator
  • KITE Manual Micromanipulator

Accessories

Ultra Micro Pump Nanoliter 2010
The world's smallest dead volume (2.7µL) injection syringe system when the 10μL NanoFil syringe is used with WPI needles 33-36g. It comes with various needle sizes from 26 ga. to 36 ga. Versatile research applications are available, including RPE and IO Kits. Custom needle shapes are available —blunt, sharp, beveled. UMP3 is a motorized syringe pump that accepts syringes from 0.5μL–1mL. Using a 10μL syringe, the actual, minimum volume is 5–25nL. For intuitive, intelligent control, the UMP3 is combined with the Micro4 controller. The Nanoliter 2010 system is perfect for applications in the 2.3–69nL range, with fast, accurate 2.3nL aliquot injections. It can be combined with the Micro4 controller.

See Selection

 

References

Warmerdam, T., Schröder, F., Wit, H., & Albers, F. (n.d.). Perilymphatic and endolymphatic pressures during endolymphatic hydrops. European Archives of Oto-Rhino-Laryngology, 260(1), 9–11. http://doi.org/10.1007/s00405-002-0518-2 

Wei, J., Song, J., Jiang, S., Zhang, G., Wheeler, D., Zhang, J., … Liu, R. (2017). Role of intratubular pressure during the ischemic phase in acute kidney injury. American Journal of Physiology - Renal Physiology, 312(6), F1158–F1165. http://doi.org/10.1152/ajprenal.00527.2016 

Petrie, R. J., Koo, H., & Yamada, K. M. (2014). Generation of compartmentalized pressure by a nuclear piston governs cell motility in a 3D matrix. Science, 345(6200), 1062–1065. http://doi.org/10.1126/science.1256965 

Petrie, R. J., Koo, H., & Yamada, K. M. (2014). Generation of compartmentalized pressure by a nuclear piston governs cell motility in a 3D matrix. Science (New York, N.Y.), 345(6200), 1062–5. http://doi.org/10.1126/science.1256965 

Petrie, R. J., & Koo, H. (2014). Direct measurement of intracellular pressure. Current Protocols in Cell Biology / Editorial Board, Juan S. Bonifacino ... [et Al.], 63, 12.9.1-9. http://doi.org/10.1002/0471143030.cb1209s63 

Pacella, J. J., Kameneva, M. V, Brands, J., Lipowsky, H. H., Vink, H., Lavery, L. L., & Villanueva, F. S. (2012). Modulation of pre-capillary arteriolar pressure with drag-reducing polymers: a novel method for enhancing microvascular perfusion. Microcirculation (New York, N.Y. : 1994), 19(7), 580–5. http://doi.org/10.1111/j.1549-8719.2012.00190.x 
Park, J. J.-H., Boeven, J. J., Vogel, S., Leonhardt, S., Wit, H. P., & Westhofen, M. (2012). Hydrostatic fluid pressure in the vestibular organ of the guinea pig. European Archives of Oto-Rhino-Laryngology, 269(7), 1755–1758. http://doi.org/10.1007/s00405-011-1813-6 

Hepatic microvascular pressure during anaphylactic shock in anesthetized rats. (2009). Microvascular Research, 78(2), 169–173. http://doi.org/10.1016/J.MVR.2009.06.007 

Valk, W. L., Wit, H. P., & Albers, F. W. J. (2006). Rupture of Reissner’s membrane during acute endolymphatic hydrops in the guinea pig: a model for Ménière’s disease? Acta Oto-Laryngologica, 126(10), 1030–1035. http://doi.org/10.1080/00016480600621722 

Kopp, R., Schwerte, T., & Pelster, B. (2005). Cardiac performance in the zebrafish breakdance mutant. The Journal of Experimental Biology, 208(Pt 11), 2123–34. http://doi.org/10.1242/jeb.01620 

Lucitti, J. L., Tobita, K., & Keller, B. B. (2005). Arterial hemodynamics and mechanical properties after circulatory intervention in the chick embryo. The Journal of Experimental Biology, 208, 1877–1885. http://doi.org/10.1242/jeb.01574 

Understanding cardiovascular physiology in zebrafish and Xenopus larvae: the use of microtechniques. (2003). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 135(1), 131–145. http://doi.org/10.1016/S1095-6433(03)00044-8 

Hu, N., Yost, H. J., & Clark, E. B. (2001). Cardiac morphology and blood pressure in the adult zebrafish. The Anatomical Record, 264(1), 1–12. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11505366 

Ishii, T., Kuwaki, T., Masuda, Y., & Fukuda, Y. (2001). Postnatal development of blood pressure and baroreflex in mice. Autonomic Neuroscience : Basic & Clinical, 94(1–2), 34–41. http://doi.org/10.1016/S1566-0702(01)00339-3 

Hu, N., Sedmera, D., Yost, H. J., & Clark, E. B. (2000). Structure and function of the developing zebrafish heart. The Anatomical Record, 260(2), 148–57. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10993952 

Kelly, S. M., & Macklem, P. T. (1991). Direct measurement of intracellular pressure. The American Journal of Physiology, 260(June), C652–C657. http://doi.org/10.1002/0471143030.cb1209s63 

Proximodistal gradient in endoneurial fluid pressure. (1988). Experimental Neurology, 102(3), 368–370. http://doi.org/10.1016/0014-4886(88)90233-6 

Tanner, C., Frambach, D. A., & Misfeldt, D. S. (1983). Transepithelial transport in cell culture. A theoretical and experimental analysis of the biophysical properties of domes. Biophysical Journal, 43(2), 183–90. http://doi.org/10.1016/S0006-3495(83)84339-2 

Rabito, C. A., Tchao, R., Valentich, J., & Leighton, J. (1980). Effect of cell-substratum interaction on hemicyst formation by MDCK cells. In Vitro, 16(6), 461–8. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/6248454