PUMP, ALADDIN, INFUSE ONLY

$350.00
Prices valid in USA, Canada, and PR only.
Order code
AL-300
Prices valid in USA, Canada, and PR only.

The AL-300 pump is available in infuse only. The simplicity of the design and user-friendly interface allows for ease-of set-up and functionality, at an extremely cost-effective price.

Need bi-directional infuse/withdraw capabilities? Or a multiple syringe infusion set-up? Check out our other products from The Aladdin series:

  • Aladdin Single-Syringe Infusion Pump (AL-1000)
  • Multi-Barrel Programmable 6 Syringe Pump (AL-6000)
Prices valid in USA, Canada, and PR only.
Order code Description # Pumps High Pressure Programmable Infuse/Withdraw
AL-300 Single Syringe Pump  1  No No Infuse Only 

Features

  • Holds 1 Syringe from micro-liter sizes up to 60 mL. (140 mL partially filled)
  • Infusion rates from 0.73 µL/hr (1 mL syringe) to 1500 mL/hr (60 mL syringe)
  • Easy-to-use keypad interface: Set the syringe diameter, pumping rate, press Start
  • Syringe purge mode
  • Power failure mode allows pump to continue pumping after a reset
  • Displays total volume dispensed in mL or µL units
  • Infusion rate can be changed while pumping
  • Selectable infusion rates units: mL/hr, µL/hr, mL/min, µL/min
  • Space Saving Chassis: Foot print size of only 5 3/4" x 8 3/4"
  • Won't take up unnecessary space on your laboratory or production bench
  • Remembers previous settings on power up
  • Precise reproducible flow rates
  • Operates from included 12VDC power supply. Worldwide power supplies available
  • Disposable, Glass, Stainless Steel Syringes and Plumbing Supplies are sold separately (Pictured syringe is for demonstration purposes only)
  • Worldwide power supplies available

Infuses Only!

Does not withdraw, no volume target, no computer interface or programmability.

AL-300

The AL-300 single syringe pump is an infuse only pump with no programmability. It offers just the features that you want, and none that you don't want to pay for. It pumps continuously until you stop the pump, and you may change the infusion rate during pumping. It remembers previous settings on power up. The power failure mode allows the pump to continue pumping after a reset. It also has a syringe purge mode.

More Information
SKU AL-300
System Infuse Only
  AL-300
SYRINGE SIZES up to 60 mL
NUMBER OF SYRINGES
MOTOR TYPE Step Motor, 1/8 to 1/2 step modes  
STEPS PER REVOLUTIONS  400
STEPPING (max. min.) 0.21 µm to 0.850 µm
MOTOR TO DRIVE SCREW RATIO 15/28 
SPEED (max./min.) 3.7742 cm/min. to 0.004205 cm/hr 
PUMPING RATES 1257 mL/hr with 60 mL syringe, to 0.73 µL/hr with 1 mL syringe
MAXIMUM FORCE  35 lb. at minimum speed, 18 lb. at maximum speed 
NUMBER OF PROGRAM PHASES n/a
RS-232 PUMP NETWORK n/a
POWER supply Wall adapter 12 V DC @ 850 mA 
DIMENSIONS 22.9 x 14.6 x 11.4 cm (8.75 x 5.75 x 4.5 in.) 
WEIGHT 1.6 kg (3.6 lb.) 

Magnetic droplets and microbubbles being retained under flow... - Scientific Figure on ResearchGate. (n.d.). Retrieved from https://www.researchgate.net/figure/235402692_fig7_Figure-10-Magnetic-droplets-and-microbubbles-being-retained-under-flow-in-vitro-A

Rouer, M., Meilhac, O., Delbosc, S., Louedec, L., Pavon-Djavid, G., Cross, J., … Alsac, J.-M. (n.d.). A New Murine Model of Endovascular Aortic Aneurysm Repair. http://doi.org/10.3791/50740

Zander, N., Gillan, M., & Sweetser, D. (2016). Recycled PET Nanofibers for Water Filtration Applications. Materials, 9(4), 247. http://doi.org/10.3390/ma9040247

Kaddumi, E. G. (2016). The influence of distal colon irritation on the changes of cystometry parameters to esophagus and colon distentions. Int Braz J Urol, 42, 594–602. http://doi.org/10.1590/S1677-5538.IBJU.2015.0238

McMillan, K. S., Boyd, M., & Zagnoni, M. (2016). Transitioning from multi-phase to single-phase microfluidics for long-term culture and treatment of multicellular spheroids. Lab Chip, 16(18), 3548–3557. http://doi.org/10.1039/C6LC00884D

Rademeyer, P., Carugo, D., Lee, J. Y., & Stride, E. (2015). Microfluidic system for high throughput characterisation of echogenic particles. Lab Chip, 15(2), 417–428. http://doi.org/10.1039/C4LC01206B

Sandler, N., Kassamakov, I., Ehlers, H., Genina, N., Ylitalo, T., & Haeggstrom, E. (2014). Rapid interferometric imaging of printed drug laden multilayer structures. Scientific Reports, 4, 4020. http://doi.org/10.1038/srep04020

Yao, M., Goult, B. T., Chen, H., Cong, P., Sheetz, M. P., Yan, J., … Chen, H. (2014). Mechanical activation of vinculin binding to talin locks talin in an unfolded conformation. Scientific Reports, 4, 259–88. http://doi.org/10.1038/srep04610

Zhang, J., Jiang, D., & Peng, H.-X. (2014). A pressurized filtration technique for fabricating carbon nanotube buckypaper: Structure, mechanical and conductive properties. Microporous and Mesoporous Materials, 184, 127–133. http://doi.org/10.1016/j.micromeso.2013.10.012

Horst, M., Milleret, V., Nötzli, S., Madduri, S., Sulser, T., Gobet, R., & Eberli, D. (2014). Increased porosity of electrospun hybrid scaffolds improved bladder tissue regeneration. Journal of Biomedical Materials Research. Part A, 102(7), 2116–24. http://doi.org/10.1002/jbm.a.34889

Xue, N., Li, X., Bertulli, C., Li, Z., Patharagulpong, A., Sadok, A., … Ridley, A. (2014). Rapid patterning of 1-D collagenous topography as an ECM protein fibril platform for image cytometry. PloS One, 9(4), e93590. http://doi.org/10.1371/journal.pone.0093590

Hosny, N. A., Mohamedi, G., Rademeyer, P., Owen, J., Wu, Y., Tang, M.-X., … Kuimova, M. K. (2013). Mapping microbubble viscosity using fluorescence lifetime imaging of molecular rotors. Proceedings of the National Academy of Sciences, 110(23), 9225–9230. http://doi.org/10.1073/pnas.1301479110

Tonurist, K., Thomberg, T., Janes, A., & Lust, E. (2013). Specific Performance of Electrical Double-Layer Capacitors Based on Different Separator Materials and Non-Aqueous Electrolytes. ECS Transactions, 50(43), 181–189. http://doi.org/10.1149/05043.0181ecst

Bahnemann, J., Rajabi, N., Fuge, G., Barradas, O., Müller, J., Pörtner, R., & Zeng, A.-P. (2013). A New Integrated Lab-on-a-Chip System for Fast Dynamic Study of Mammalian Cells under Physiological Conditions in Bioreactor. Cells, 2(2), 349–360. http://doi.org/10.3390/cells2020349

Zhang, J., Jiang, D., Peng, H.-X., & Qin, F. (2013). Enhanced mechanical and electrical properties of carbon nanotube buckypaper by in situ cross-linking. Carbon, 63, 125–132. http://doi.org/10.1016/j.carbon.2013.06.047

Yin, B., Kuranov, R. V., McElroy, A. B., Kazmi, S., Dunn, A. K., Duong, T. Q., & Milner, T. E. (2013). Dual-wavelength photothermal optical coherence tomography for imaging microvasculature blood oxygen saturation. Journal of Biomedical Optics, 18(5), 56005. http://doi.org/10.1117/1.JBO.18.5.056005

Tonurist, K., Thomberg, T., Janes, A., Romann, T., Sammelselg, V., & Lust, E. (2013). Polymorphic Behavior and Morphology of Electrospun Poly(Vinylidene Fluoride) Separator Materials for Non-Aqueous Electrolyte Based Electric Double Layer Capacitors. ECS Transactions, 50(45), 49–58. http://doi.org/10.1149/05045.0049ecst

Zander, N. E., Orlicki, J. A., Rawlett, A. M., & Beebe, T. P. (2013). Electrospun polycaprolactone scaffolds with tailored porosity using two approaches for enhanced cellular infiltration. Journal of Materials Science. Materials in Medicine, 24(1), 179–87. http://doi.org/10.1007/s10856-012-4771-7

Herricks, T., Avril, M., Janes, J., Smith, J. D., & Rathod, P. K. (2013). Clonal variants of Plasmodium falciparum exhibit a narrow range of rolling velocities to host receptor CD36 under dynamic flow conditions. Eukaryotic Cell, 12(11), 1490–8. http://doi.org/10.1128/EC.00148-13

Ferreira, D. S., Reis, R. L., & Azevedo, H. S. (2013). Peptide-based microcapsules obtained by self-assembly and microfluidics as controlled environments for cell culture. Soft Matter, 9(38), 9237. http://doi.org/10.1039/c3sm51189h

Birngruber, T., Ghosh, A., Perez-Yarza, V., Kroath, T., Ratzer, M., Pieber, T. R., & Sinner, F. (2013). Cerebral open flow microperfusion: a new in vivo technique for continuous measurement of substance transport across the intact blood-brain barrier. Clinical and Experimental Pharmacology & Physiology, 40(12), 864–71. http://doi.org/10.1111/1440-1681.12174

Luboz, V., Promayon, E., Chagnon, G., Alonso, T., Favier, D., Barthod, C., & Payan, Y. (2012). Validation of a Light Aspiration device for in vivo Soft TIssue Characterization (LASTIC) Validation of a Light Aspiration device for in vivo. Soft TIssue Characterization, 8415, 243–256.

Owen, J., Zhou, B., Rademeyer, P., Tang, M.-X., Pankhurst, Q., Eckersley, R., & Stride, E. (2012). Understanding the Structure and Mechanism of Formation of a New Magnetic Microbubble Formulation. Theranostics, 2(12), 1127–1139. http://doi.org/10.7150/thno.4307

Desai, P. (2006). Comparison Of Root Canal Irrigation Systems In Reducing Intracanal Microorganisms Using Saline-An In Vitro Study.

Back to Top