Constant Current Stimulus Isolator

$1,280.00
Order code
VAR-2273

Automated bipolar pulsing for zero net charge on biological preparations

  • Constant current
  • Unipolar and bipolar stimulation modes
  • Built-in non-compliance alarm
  • Input is optically isolated
  • Standard TTL triggering
  • DC test mode
  • Powered by 9 V alkaline or rechargeable batteries

Options

Part # Description Battery Type Includes Charger
A365RC A365R with an A362 Battery Charger Rechargeable Battery Yes
SYS-A365R High Voltage Isolator, Bipolar Rechargeable Battery No
SYS-A365D High Voltage Isolator, Bipolar Alkaline Batteries _

Benefits

  • Compliance voltage is 100V or better
  • Bipolar mode auto generates alternating positive and negative pulses from TTL input
  • Test mode simplifies performance verification
  • Optical isolation enhances safety of the preparation and reduces noise susceptibility

Applications

  • Electrophysiology
  • Brain slice stimulation
  • In vivo brain and CNS stimulation

Activated by conventional logic-level commands, Model A365 can be gated by any pulse generator, stimulator or computer output with automated bipolar pulsing for zero net charge on biological preparations.

Dual tone audible alarms

A tone sounds when an open electrode circuit is detected or when system compliance is reached. A second optional tone sounds when a signal is applied to the input. A test switch is also provided to check battery charge.

Current delivery up to 10 mA at more than 100V

Stimulus currents are set using a three-digit control knob and a three-position range switch. Output current tracks control set­tings to better than 1%. Output current is load independent, and voltage suf­fi­cient to push the desired current through the load is automatically de­vel­oped, sub­ject only to compliance limits. Model A360LA produces up to 10 mA current, in three ranges, at more than 100 V compliance.

Bipolar Output Polarity

Output polarity is determined by a push switch on the front panel. Bipolar current is toggled by the command waveform, setting al­ter­nat­ing pulses as positive or negative.

Power

This A365RC Stimulus Isolator includes both the A365R Stimulus Isolator and the A362 battery charger.The rechargeable A365R is supplied with a nickel metal hydride battery stack. The A362 Battery Charger is required with the A365R

 NOTE: Not intended for human use.

OUTPUT WAVEFORM DC or current pulse
OUTPUT CURRENT RANGES 0.1, 1.0, and 10 mA
CURRENT AMPLITUDE ERROR 0.5% of full scale, max.
CURRENT RESOLUTION 0.1% of full scale, typical
OUTPUT LOAD VOLTAGE EXCURSION (COMPLIANCE) 100 V
EXTERNAL COMMAND THRESHOLD 5 V at 3 mA, min. 10 V, max.
TRIGGER THRESHOLD 2.0 V at 0.5 mA
OUTPUT POLARITY Reversible, manual switch or automatic
CURRENT RISE TIME & DELAY 6 μs, typical (1 KΩ load)
CURRENT FALL TIME & DELAY 10 μs, typical (1 KΩ load)
OUTPUT TO GROUND RESISTANCE 1012 Ω
OPTOCOUPLER 2500 V, rated min. breakdown voltage
POWER: Model A365D (dry cell) 16 alkaline 9 V batteries, included
POWER: Model A365R (rechargeable) 16 rechargeable NiMH 9 V batteries included
DIMENSIONS 8.5 x 3.5 x 5 in. (22 x 9 x 12 cm)
SHIPPING WEIGHT 4 lb. (1.8 kg)

Ji, H., & Shepard, P. D. (n.d.). Behavioral/Systems/Cognitive Lateral Habenula Stimulation Inhibits Rat Midbrain Dopamine Neurons through a GABA A Receptor-Mediated Mechanism. http://doi.org/10.1523/JNEUROSCI.0958-07.2007

Yavich, L., Tanila, H., Vepsäläinen, S., & Jäkälä, P. (n.d.). Neurobiology of Disease Role of ␣-Synuclein in Presynaptic Dopamine Recruitment. http://doi.org/10.1523/JNEUROSCI.2559-04.2004

D ’ambrosio, R., Gordon, D. S., Winn, H. R., ’ambrosio, D., Raimondo, D. S., Gordon, H., & Richard, W. (n.d.). Differential Role of KIR Channel and Na ϩ /K ϩ -Pump in the Regulation of Extracellular K ϩ in Rat Hippocampus. http://doi.org/10.1152/jn.00240.2001

Iremonger, K. J., Anderson, T. R., Hu, B., & Kiss, Z. H. T. (n.d.). Cellular Mechanisms Preventing Sustained Activation of Cortex During Subcortical High-Frequency Stimulation. http://doi.org/10.1152/jn.00105.2006

D ’ambrosio, R., Maris, D. O., Grady, M. S., Winn, H. R., & Janigro, D. (n.d.). Impaired K ؉ Homeostasis and Altered Electrophysiological Properties of Post-Traumatic Hippocampal Glia.

Huda, R., Mccrimmon, D. R., & Martina, M. (n.d.). pH modulation of glial glutamate transporters regulates synaptic transmission in the nucleus of the solitary tract.

Chen, Y., Beffert, U., Ertunc, M., Tang, T.-S., Kavalali, E. T., Bezprozvanny, I., & Herz, J. (n.d.). Development/Plasticity/Repair Reelin Modulates NMDA Receptor Activity in Cortical Neurons. http://doi.org/10.1523/JNEUROSCI.1951-05.2005

Rowland, N. C., & Jaeger, D. (n.d.). Responses to Tactile Stimulation in Deep Cerebellar Nucleus Neurons Result From Recurrent Activation in Multiple Pathways. http://doi.org/10.1152/jn.01100.2007

D ’ambrosio, R., Wenzel, J., Schwartzkroin, P. A., Mckhann Ii, G. M., & Janigro, D. (n.d.). Functional Specialization and Topographic Segregation of Hippocampal Astrocytes.

Lee, E., Hong, J., Park, Y.-G., Chae, S., Kim, Y., & Kim, D. (2015). Left brain cortical activity modulates stress effects on social behavior. Scientific Reports, 5, 13342. http://doi.org/10.1038/srep13342

Gindrat, A.-D., Quairiaux, C., Britz, J., Brunet, D., Lanz, F., Michel, C. M., & Rouiller, E. M. (2015). Whole-scalp EEG mapping of somatosensory evoked potentials in macaque monkeys. Brain Structure & Function, 220(4), 2121–42. http://doi.org/10.1007/s00429-014-0776-y

Younce, J. R., Albaugh, D. L., & Shih, Y.-Y. I. (2014). Deep Brain Stimulation with Simultaneous fMRI in Rodents. Journal of Visualized Experiments, (84), e51271–e51271. http://doi.org/10.3791/51271

Avila, I., & Lin, S.-C. (2014). Motivational Salience Signal in the Basal Forebrain Is Coupled with Faster and More Precise Decision Speed. PLoS Biology, 12(3), e1001811. http://doi.org/10.1371/journal.pbio.1001811

Herrera, C., Directores, R., Panetsos, F., Carlos, P., & Trueba, A. (2014). TESIS DOCTORAL Efectos de la estimulación artificial de un nervio periférico seccionado sobre la vía somatosensorial desaferentizada de la rata.

Nguyen, D. P., & Lin, S.-C. (2014). A frontal cortex event-related potential driven by the basal forebrain. eLife, 3, e02148. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3974155&tool=pmcentrez&rendertype=abstract

Dalby-Brown, W., Jessen, C., Hougaard, C., Jensen, M. L., Jacobsen, T. A., Nielsen, K. S., … Jørgensen, S. (2013). Characterization of a novel high-potency positive modulator of Kv7 channels. European Journal of Pharmacology, 709(1–3), 52–63. http://doi.org/10.1016/j.ejphar.2013.03.039

Licko, T., Seeger, N., Zellinger, C., Russmann, V., Matagne, A., & Potschka, H. (2013). Lacosamide treatment following status epilepticus attenuates neuronal cell loss and alterations in hippocampal neurogenesis in a rat electrical status epilepticus model. Epilepsia, 54(7), 1176–1185. http://doi.org/10.1111/epi.12196

Oulad Ben Taib, N., & Manto, M. (2013). Trains of Epidural DC Stimulation of the Cerebellum Tune Corticomotor Excitability. Neural Plasticity, 2013(10), 1–12. http://doi.org/10.1155/2013/613197

Schroder, E. A., Lefta, M., Zhang, X., Bartos, D. C., Feng, H.-Z., Zhao, Y., … Delisle, B. P. (2013). The cardiomyocyte molecular clock, regulation of Scn5a, and arrhythmia susceptibility. American Journal of Physiology. Cell Physiology, 304(10), C954-65. http://doi.org/10.1152/ajpcell.00383.2012

Syvänen, S., Russmann, V., Verbeek, J., Eriksson, J., Labots, M., Zellinger, C., … Potschka, H. (2013). [11C]quinidine and [11C]laniquidar PET imaging in a chronic rodent epilepsy model: Impact of epilepsy and drug-responsiveness. Nuclear Medicine and Biology, 40(6), 764–775. http://doi.org/10.1016/j.nucmedbio.2013.05.008

Sonner, P. M., & Ladle, D. R. (2013). Early postnatal development of GABAergic presynaptic inhibition of Ia proprioceptive afferent connections in mouse spinal cord. Journal of Neurophysiology, 109(8), 2118–28. http://doi.org/10.1152/jn.00783.2012

Atherton, J. F., Menard, A., Urbain, N., & Bevan, M. D. (2013). Short-term depression of external globus pallidus-subthalamic nucleus synaptic transmission and implications for patterning subthalamic activity. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 33(17), 7130–44. http://doi.org/10.1523/JNEUROSCI.3576-12.2013

Huda, R., McCrimmon, D. R., & Martina, M. (2013). pH modulation of glial glutamate transporters regulates synaptic transmission in the nucleus of the solitary tract. Journal of Neurophysiology, 110(2), 368–377. http://doi.org/10.1152/jn.01074.2012

Saha, D., Leong, K., Katta, N., & Raman, B. (2013). Multi-unit Recording Methods to Characterize Neural Activity in the Locust (<em>Schistocerca Americana</em>) Olfactory Circuits. Journal of Visualized Experiments, (71), e50139–e50139. http://doi.org/10.3791/50139

Zhu, Z., Sierra, A., Burnett, C. M.-L. L., Chen, B., Subbotina, E., Koganti, S. R. K., … Zingman, L. V. (2013). Sarcolemmal ATP-sensitive potassium channels modulate skeletal muscle function under low-intensity workloads. The Journal of General Physiology, 143(1), 119–134. http://doi.org/10.1085/jgp.201311063

Brenowitz, S. D., & Regehr, W. G. (2012). Presynaptic imaging of projection fibers by in vivo injection of dextran-conjugated calcium indicators. Cold Spring Harbor Protocols, 2012(4), 465–71. http://doi.org/10.1101/pdb.prot068551

Seo, J. H., Jang, I. K., Kim, H., Yang, M. S., Lee, J. E., Kim, H. E., … Cho, S.-R. (2011). Early Immunomodulation by Intravenously Transplanted Mesenchymal Stem Cells Promotes Functional Recovery in Spinal Cord Injured Rats. Cell Medicine, 2(2), 55–67. http://doi.org/10.3727/215517911X582788

Li, W., Janardhan, A. H., Fedorov, V. V, Sha, Q., Schuessler, R. B., & Efimov, I. R. (2011). Low-energy multistage atrial defibrillation therapy terminates atrial fibrillation with less energy than a single shock. Circulation. Arrhythmia and Electrophysiology, 4(6), 917–25. http://doi.org/10.1161/CIRCEP.111.965830

Mathis, D. M., Furman, J. L., & Norris, C. M. (2011). Preparation of Acute Hippocampal Slices from Rats and Transgenic Mice for the Study of Synaptic Alterations during Aging and Amyloid Pathology. Journal of Visualized Experiments, (49), e2330–e2330. http://doi.org/10.3791/2330

Kim, J., Woo, J., Park, Y.-G., Chae, S., Jo, S., Choi, J. W., … Kim, D. (2011). Thalamic T-type Ca2+ channels mediate frontal lobe dysfunctions caused by a hypoxia-like damage in the prefrontal cortex. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 31(11), 4063–73. http://doi.org/10.1523/JNEUROSCI.4493-10.2011

Manto, M. U., Hampe, C. S., Rogemond, V., & Honnorat, J. (2011). Respective implications of glutamate decarboxylase antibodies in stiff person syndrome and cerebellar ataxia. Orphanet Journal of Rare Diseases, 6(1), 3. http://doi.org/10.1186/1750-1172-6-3

Pelkonen, A., Hiltunen, M., Kiianmaa, K., & Yavich, L. (2010). Stimulated dopamine overflow and alpha-synuclein expression in the nucleus accumbens core distinguish rats bred for differential ethanol preference. Journal of Neurochemistry, 114(4), 1168–76. http://doi.org/10.1111/j.1471-4159.2010.06844.x

Foust, A. J., Schei, J. L., Rojas, M. J., & Rector, D. M. (2008). In vitro and in vivo noise analysis for optical neural recording. Journal of Biomedical Optics, 13(4), 44038. http://doi.org/10.1117/1.2952295

Schei, J. L., McCluskey, M. D., Foust, A. J., Yao, X.-C., & Rector, D. M. (2008). Action potential propagation imaged with high temporal resolution near-infrared video microscopy and polarized light. NeuroImage, 40(3), 1034–1043. http://doi.org/10.1016/j.neuroimage.2007.12.055

Ji, H., & Shepard, P. D. (2007). Lateral habenula stimulation inhibits rat midbrain dopamine neurons through a GABA(A) receptor-mediated mechanism. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 27(26), 6923–30. http://doi.org/10.1523/JNEUROSCI.0958-07.2007

Foust, A. J., & Rector, D. M. (2007). Optically teasing apart neural swelling and depolarization. Neuroscience, 145(3), 887–99. http://doi.org/10.1016/j.neuroscience.2006.12.068

Lee, B. H., Lee, K. H., Yoon, D. H., Kim, U. J., Hwang, Y. S., Park, S. K., … Jahng, T. (2005). Effects of methylprednisolone on the neural conduction of the motor evoked potentials in spinal cord injured rats. Journal of Korean Medical Science, 20(1), 132–8. http://doi.org/10.3346/jkms.2005.20.1.132

Sokolow, S., Manto, M., Gailly, P., Molgó, J., Vandebrouck, C., Vanderwinden, J.-M., … Schurmans, S. (2004). Impaired neuromuscular transmission and skeletal muscle fiber necrosis in mice lacking Na/Ca exchanger 3. Journal of Clinical Investigation, 113(2), 265–273. http://doi.org/10.1172/JCI18688

D’Ambrosio, R., Fairbanks, J. P., Fender, J. S., Born, D. E., Doyle, D. L., & Miller, J. W. (2004). Post-traumatic epilepsy following fluid percussion injury in the rat. Brain : A Journal of Neurology, 127(Pt 2), 304–14. http://doi.org/10.1093/brain/awh038

Anderson, T., Hu, B., Pittman, Q., & Kiss, Z. H. T. (2004). Mechanisms of deep brain stimulation: an intracellular study in rat thalamus. The Journal of Physiology, 559(1), 301–313. http://doi.org/10.1113/jphysiol.2004.064998

Yavich, L., & Tiihonen, J. (2000). Ethanol modulates evoked dopamine release in mouse nucleus accumbens: dependence on social stress and dose. European Journal of Pharmacology, 401(3), 365–73. Retrieved from http://www.safetylit.org/citations /index.php?fuseaction=citations.viewdetails&citationIds%5B%5D=citjournalarticle_271069_38

Knisley, S. B., Trayanova, N., & Aguel, F. (1999). Roles of Electric Field and Fiber Structure in Cardiac Electric Stimulation. Biophysical Journal, 77(3), 1404–1417. http://doi.org/10.1016/S0006-3495(99)76989-4

More Choices:
  1. BNC-TO-BNC CABLE, 10 FT
    BNC-TO-BNC CABLE, 10 FT
    500184
    $34.00
  2. 500257 BNC to BNC Cable, 6" (15cm)
    500257 BNC to BNC Cable, 6" (15cm)
    500257
    $23.00
  3. BNC to Double Banana Connector
    BNC to Double Banana Connector
    13347
    $31.00
  4. 500258 BNC to BNC Cable, 12" (30cm)
    500258 BNC to BNC Cable, 12" (30cm)
    500258
    $23.00
  5. BNC-TO-BNC CABLE, 6 '
    BNC-TO-BNC CABLE, 6 '
    2851
    $32.00
  6. Dummy Load Resistor Kit
    Dummy Load Resistor Kit
    DRL
    $116.00
  7. 500259 BNC to BNC Cable, 18" (46cm)
    500259 BNC to BNC Cable, 18" (46cm)
    500259
    $23.00
  8. A362 Battery Charger
    A362 Battery Charger
    SYS-A362
    $433.00
Copyright © World Precision Instruments. All rights reserved.