Stimulator/Isolator for Precise Current Delivery

$1,813.00
Order code
VAR-2271

Constant current stimulus isolator with integrated pulse generator

  • Up to 10 mA of constant current with built-in pulse generator
  • Unipolar stimulation
  • Built-in non-compliance alarm
  • Input is optically isolated
  • Manual, external sync, gating or standard
  • TTL triggering
  • DC test mode
  • Output polarity/“on/off” switch
  • Powered with six rechargeable lead acid batteries
  • >100V compliance

Options

Part # Description Battery Type Includes Charger
A320RC A3A320R with A362 Battery Charger Rechargeable Battery Yes
SYS-A320R Isostim Stimulator/Isolator Rechargeable Battery No

Benefits

  • Cost-effective for budgets which limit purchasing a separate stimulus signal generator
  • Built-in free running pulse generator can be externally gated for bursts
  • Test mode simplifies performance verification
  • Optical isolation enhances safety of the preparation and reduces noise susceptibility
  • Save on a rechargeable system when purchased as A320RC

Applications

  • General purpose brain and CNS electrophysiology
  • Neuro-electrophysiology teaching labs

Exceptional timing control

Pulse interval and width are set with single-turn continuously variable con­trols from 5 ms to 5.5 s in three ranges. Pulse width is continuously variable from 50 µs to 550 ms in four ranges.

Modes of operation

In FREE RUN, Isostim™ generates con­tin­u­ous square waves. In EXT GATE or EXT SYNC modes, externally applied pulses can generate trains or single events. Single pulses of finite duration can be produced using a push-button on the instrument’s front panel. EXT/DC mode converts Isostim™ to a passive stimulus isolator.

Dual tone audible alarm

A tone sounds when an open circuit is detected or when system compliance is reached. A second tone, which sounds when a signal is applied to the input, can only be heard if the batteries have sufficient charge to operate the isolator. A violation light advises when pulse width exceeds the interval.

Precise current delivery

Stimulus currents up to 10 mA can be set on the front panel with a control knob and a two-po­si­tion range switch. Output current is load-in­de­pen­dent.

Power

Isostim™ model A320D is powered by readily ob­tain­able 9-volt alkaline batteries (in­clud­ed). Un­der average use these will last several months before re­place­ment is required. The re­charge­able A320R is supplied with a nickel metal hydride battery stack which provides 10-12 hours of operation before recharge is required. The A362 Battery Charger must be used with the A320R.

NOTE: Not intended for human use.

TIMING PARAMETERS:
Interval

5 ms to 5.5 s continuously variable in three ranges (0.18 to 200 Hz)
Pulse width 50 μs to 550 ms continuously variable in four ranges
INPUT
External sync

Accepts 1 μs minimum pulses
External gate Accepts 1 μs pulse to continuous
Ext. command voltage threshold 5 V at 3 mA min., 8.5 V max.
OUTPUT:
Waveform

DC, pulse from internal timing or externally generated pulse
Current ranges 0-1 mA, 0-10 mA
Load voltage excursion (compliance) 100 V nom., 150 V max.
Output polarity Reversible, manual switch
Current rise time and delay 8 μs, typical (1 KΩ load)
Current fall time and delay 10 μs, typical (1 KΩ load)
Leakage resistance, output to ground 1012 Ω
Optocoupler 2500 V rated min. breakdown voltage
POWER:
Dry Cell (Version D)

16 alkaline 7.2 V batteries included
Rechargeable (Version R) 16 rechargeable NiMH 9 V batteries included
DIMENSIONS 8.5 x 3.5 x 4.9 in. (22 x 9 x 12 cm)
SHIPPING WEIGHT 4 lb. (1.8 kg)

(PDF) N-Methyl-D-Aspartate receptor activation modulates the local effect of electrical high frequency stimulation in the rat caudate nucleus. (n.d.). Retrieved November 27, 2018, from https://www.researchgate.net/publication/230626770_N-Methyl-D-Aspartate_receptor_activation_modulates_the_local_effect_of_electrical_high_frequency_stimulation_in_the_rat_caudate_nucleus

Sivachenko, I. B., Medvedev, D. S., Molodtsova, I. D., Panteleev, S. S., Sokolov, A. Y., & Lyubashina, O. A. (2016). Effects of Millimeter-Wave Electromagnetic Radiation on the Experimental Model of Migraine. Bulletin of Experimental Biology and Medicine, 160(4), 425–428. https://doi.org/10.1007/s10517-016-3187-7

Huria, T., Beeraka, N. M., Al-Ghamdi, B., & Fern, R. (2015). Premyelinated Central Axons Express Neurotoxic NMDA Receptors: Relevance to Early Developing White-Matter Injury. Journal of Cerebral Blood Flow & Metabolism, 35(4), 543–553. https://doi.org/10.1038/jcbfm.2014.227

Hayashida, K., Sano, M., Kamimura, N., Yokota, T., Suzuki, M., Ohta, S., … Hori, S. (2014). Hydrogen Inhalation During Normoxic Resuscitation Improves Neurological Outcome in a Rat Model of Cardiac Arrest Independently of Targeted Temperature Management. Circulation, 130(24), 2173–2180. https://doi.org/10.1161/CIRCULATIONAHA.114.011848

Hayashida, K., Sano, M., Kamimura, N., Yokota, T., Suzuki, M., Maekawa, Y., … Hori, S. (2012). H(2) gas improves functional outcome after cardiac arrest to an extent comparable to therapeutic hypothermia in a rat model. Journal of the American Heart Association, 1(5), e003459. https://doi.org/10.1161/JAHA.112.003459

Brown, A. M., Evans, R. D., Black, J., & Ransom, B. R. (2012). Schwann cell glycogen selectively supports myelinated axon function. Annals of Neurology, 72(3), 406–418. https://doi.org/10.1002/ana.23607

Alix, J. J. P., Zammit, C., Riddle, A., Meshul, C. K., Back, S. A., Valentino, M., & Fern, R. (2012). Central axons preparing to myelinate are highly sensitivity to ischemic injury. Annals of Neurology, 72(6), 936–951. https://doi.org/10.1002/ana.23690

Ferreiro, M., Petrosky, A. D., & Escobar, A. L. (2012). Intracellular Ca 2+ release underlies the development of phase 2 in mouse ventricular action potentials. American Journal of Physiology-Heart and Circulatory Physiology, 302(5), H1160–H1172. https://doi.org/10.1152/ajpheart.00524.2011

Baltan, S., Murphy, S. P., Danilov, C. A., Bachleda, A., & Morrison, R. S. (2011). Histone Deacetylase Inhibitors Preserve White Matter Structure and Function during Ischemia by Conserving ATP and Reducing Excitotoxicity. Journal of Neuroscience, 31(11), 3990–3999. https://doi.org/10.1523/JNEUROSCI.5379-10.2011

Hu, W., Bi, Y., Zhang, K., Meng, F., & Zhang, J. (2011). High-frequency electrical stimulation in the nucleus accumbens of morphine-treated rats suppresses neuronal firing in reward-related brain regions. Medical Science Monitor : International Medical Journal of Experimental and Clinical Research, 17(6), BR153-60. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3539543&tool=pmcentrez&rendertype=abstract

Erickson, M. A., Maramara, L. A., & Lisman, J. (2010). A single brief burst induces GluR1-dependent associative short-term potentiation: a potential mechanism for short-term memory. Journal of Cognitive Neuroscience, 22(11), 2530–2540. https://doi.org/10.1162/jocn.2009.21375

Baltan, S., Inman, D. M., Danilov, C. A., Morrison, R. S., Calkins, D. J., & Horner, P. J. (2010). Metabolic Vulnerability Disposes Retinal Ganglion Cell Axons to Dysfunction in a Model of Glaucomatous Degeneration. Journal of Neuroscience, 30(16), 5644–5652. https://doi.org/10.1523/JNEUROSCI.5956-09.2010

Siddharthan, V., Wang, H., Motter, N. E., Hall, J. O., Skinner, R. D., Skirpstunas, R. T., & Morrey, J. D. (2009). Persistent West Nile virus associated with a neurological sequela in hamsters identified by motor unit number estimation. Journal of Virology, 83(9), 4251–4261. https://doi.org/10.1128/JVI.00017-09

Baltan, S., Besancon, E. F., Mbow, B., Ye, Z., Hamner, M. A., & Ransom, B. R. (2008). White Matter Vulnerability to Ischemic Injury Increases with Age Because of Enhanced Excitotoxicity. Journal of Neuroscience, 28(6), 1479–1489. https://doi.org/10.1523/JNEUROSCI.5137-07.2008

Liu, Z.-W., & Gao, X.-B. (2007). Adenosine Inhibits Activity of Hypocretin/Orexin Neurons by the A1 Receptor in the Lateral Hypothalamus: A Possible Sleep-Promoting Effect. Journal of Neurophysiology, 97(1), 837–848. https://doi.org/10.1152/jn.00873.2006

Tekkök, S. B., Ye, Z., & Ransom, B. R. (2007). Excitotoxic Mechanisms of Ischemic Injury in Myelinated White Matter. Journal of Cerebral Blood Flow & Metabolism, 27(9), 1540–1552. https://doi.org/10.1038/sj.jcbfm.9600455

Hiller, A., Loeffler, S., Haupt, C., Litza, M., Hofmann, U., & Moser, A. (2007). Electrical high frequency stimulation of the caudate nucleus induces local GABA outflow in freely moving rats. Journal of Neuroscience Methods, 159(2), 286–290. https://doi.org/10.1016/j.jneumeth.2006.07.023

Wollmann, G., Acuna-Goycolea, C., & van den Pol, A. N. (2005). Direct Excitation of Hypocretin/Orexin Cells by Extracellular ATP at P2X Receptors. Journal of Neurophysiology, 94(3), 2195–2206. https://doi.org/10.1152/jn.00035.2005

Okumoto, S., Looger, L. L., Micheva, K. D., Reimer, R. J., Smith, S. J., & Frommer, W. B. (2005). Detection of glutamate release from neurons by genetically encoded surface-displayed FRET nanosensors. Proceedings of the National Academy of Sciences, 102(24), 8740–8745. https://doi.org/10.1073/pnas.0503274102

Fu, L.-Y., Acuna-Goycolea, C., & van den Pol, A. N. (2004). Neuropeptide Y Inhibits Hypocretin/Orexin Neurons by Multiple Presynaptic and Postsynaptic Mechanisms: Tonic Depression of the Hypothalamic Arousal System. Journal of Neuroscience, 24(40), 8741–8751. https://doi.org/10.1523/JNEUROSCI.2268-04.2004

Brown, A. M. (2003). A modeling study predicts the presence of voltage gated Ca2+ channels on myelinated central axons. Computer Methods and Programs in Biomedicine, 71(1), 25–31. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12725962

Brown, A. M., & Ransom, B. R. (2002). Neuroprotective Effects of Increased Extracellular Ca 2+ During Aglycemia in White Matter. Journal of Neurophysiology, 88(3), 1302–1307. https://doi.org/10.1152/jn.2002.88.3.1302

Brown, A. M., Wender, R., & Ransom, B. R. (2001). Ionic Mechanisms of Aglycemic Axon Injury in Mammalian Central White Matter. Journal of Cerebral Blood Flow & Metabolism, 21(4), 385–395. https://doi.org/10.1097/00004647-200104000-00007

Jacobsen, J. (2001). Buccal iontophoretic delivery of atenolol.HCl employing a new in vitro three-chamber permeation cell. Journal of Controlled Release : Official Journal of the Controlled Release Society, 70(1–2), 83–95. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11166410

Fraysse, B., Guillet, C., Huchet-Cadiou, C., Camerino, D. C., Gascan, H., & Léoty, C. (2000). Ciliary neurotrophic factor prevents unweighting-induced functional changes in rat soleus muscle. Journal of Applied Physiology, 88(5), 1623–1630. https://doi.org/10.1152/jappl.2000.88.5.1623

Otmakhov, N., Griffith, L. C., & Lisman, J. E. (1997). Postsynaptic inhibitors of calcium/calmodulin-dependent protein kinase type II block induction but not maintenance of pairing-induced long-term potentiation. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 17(14), 5357–5365. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9204920

Reist, N. E., & Smith, S. J. (1992). Neurally evoked calcium transients in terminal Schwann cells at the neuromuscular junction. Proceedings of the National Academy of Sciences of the United States of America, 89(16), 7625–7629. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/1502174

 

More Choices:
  1. BNC-TO-BNC CABLE, 10 FT
    BNC-TO-BNC CABLE, 10 FT
    500184
    $36.00
  2. BNC to Double Banana Connector
    BNC to Double Banana Connector
    13347
    $33.00
  3. 500257 BNC to BNC Cable, 6" (15cm)
    500257 BNC to BNC Cable, 6" (15cm)
    500257
    $24.00
  4. 500258 BNC to BNC Cable, 12" (30cm)
    500258 BNC to BNC Cable, 12" (30cm)
    500258
    $24.00
  5. Dummy Load Resistor Kit
    Dummy Load Resistor Kit
    DRL
    $121.00
  6. 500259 BNC to BNC Cable, 18" (46cm)
    500259 BNC to BNC Cable, 18" (46cm)
    500259
    $24.00
  7. A362 Battery Charger
    A362 Battery Charger
    SYS-A362
    $451.00
  8. BNC-TO-BNC CABLE, 6 '
    BNC-TO-BNC CABLE, 6 '
    2851
    $34.00
Copyright © World Precision Instruments. All rights reserved.