Four-Channel Free Radical Analyzer

Item#: TBR4100

Fast, reliable, real-time detection – measure redox-reactive species

  • Real-time detection using electrochemical microsensors
  • Integrated system includes one temperature sensor, your choice of two additional sensors and a start-up kit
  • Current measurement range from 300 fA to 10 µA (four ranges) permits wide dynamic range for detection
  • Wide bandwidth allows recording of fast events
  • Measure carbon monoxide from 10 nM to 10 µM
  • Measure nitric oxide from < 0.3 nM to 100 µM
  • Measure hydrogen peroxide < 10 nM to 100 mM
  • Measure hydrogen sulfide
  • Measure glucose
  • Measure oxygen from 0.1% to 100%
  • Isolated architecture allows Lab-Trax interface to simultaneously measure free radical and independent analog data (for example, ECG, BP, etc.) on any channel
  • Four channel free radical detection

Unit Price: 7133.00

Qty:

For pricing, Customers outside of the US and Canada, please Contact your distributor

Benefits

  • Measure up to four different species and temperature in the same preparation or simultaneous measurement in four different preparations
  • Lab-Trax data acquisition system is flexible

Applications

  • Free radical detection (NO, H2O2, H2S, CO, O2 and glucose)

Videos

The video below shows how to calibrate your oxygen sensor (6 minutes).

Click here to view the current Data Sheet.

Real-time detection

Real-time detection and measurement of a variety of redox-reactive species is fast and easy using the electrochemical (amperometric) detection principle employed in the  TBR4100. This optically isolated four-channel free radical analyzer has ultra low noise and independently operated channels.

Measure multiple species simultaneously

The TBR is designed for use with WPI’s wide range of nitric oxide, hydrogen peroxide, hydrogen sulfide and oxygen sensors. The TBR4100 can measure four different species simultaneously in the same preparation. Simply plug a sensor into the input channel on the front panel and select the current range. Poise voltage can be selected from a range of values tuned for optimal response from WPI sensors. An independent output for real-time monitoring of temperature is also included.

Lab-Trax data acquisition system is flexible

The TBR1025 analyzer utilizes PC-based data acquisition via our Lab-Trax interface. Data traces are displayed and recorded in real-time. The LabScribe software (formerly called DataTrax) comes pre-configured for single or multiple electrode recording; filters, gains, and smoothing are all set for optimal results. Data can be viewed making adjustments to smoothing and filter settings without affecting the original stored raw data. Electrode calibration from multiple concentration readings can be input into the software's Multipoint Calibration utility quickly provides a plot and slope calculation for electrode sensitivity determination.

Alternately, the Lab-Trax data interface can be used for providing simultaneous acquisition of Free Radical data along with other physiological data (ECG, HR, BP, etc.) as each of the four input channels has its own independent input, filters and 24-bit converter.

Turnkey systems

TBR4100-416 includes TBR4100 analyzer and power cord, Lab-Trax-4/16 data logger system and USB cable, 4 BNC cables, 3 electrode adapter cables, 1 temperature probe, 2 sensors of your choice, and sensor start-up kit(s), if applicable.


More Information

For more information on Lab-Trax, including screen shots, see the article.

See the features available in the LabScribe software for Lab-Trax.

Manuals

TBR Instruction Manual
LabScribe 3 Instruction Manual

Sample Files – ZIP file including hardware and software manuals, NO Demo recording, concentration spreadsheet examples. (Templates_LS3.zip)

 

Power 100 ~ 240 VAC, 50-60 Hz,
Operating Temperature (ambient) 0 - 50°C (32 - 122°F)
Operating Humidity (ambient) 15 - 70% RH non-condensing
Warm up Time < 5 min.
Dimensions 135 X 419 X 217 mm (5.25" X 16.5" X 8.16")
Weight 1.35 kg (3 lb.)
Display Functions 18 mm (0.7") LCD readout, 4.5 digit Polarization Voltage (mV) Current input (nA, µA)
Controls Power (on/off)
Current Input Range
Polarization Voltage
Analog Output Range ±10 V (continuous)
Analog Output Impedance 10 KΩ
Channel to Channel Isolation >10 GΩ
Channel to Output Isolation >10 GΩ
Power Supply to AC Line Isolation >100 MΩ
Analog Output Drift < 10 pA/hr.
Temperature Input: Number of Channels 1
Temperature Input: Sensing Element Platinum RTD, 1000 Ω
Temperature Input: Range 0-100°C
Temperature Input: Accuracy ± 1°C
Temperature Input: Resolution 0.1°C
Temperature Input: Analog Output 31.25 mV/°C (continuous)
Amperometric Input: Number of Amperometric Channels 4
Amperometric Input: Signal Bandwidth 0-3 Hz
Amperometric Input: Polarization Voltage (selectable via rotary switch) Nitric Oxide 865 mV
Amperometric Input: Polarization Voltage (selectable via rotary switch) Hydrogen Sulfide 150 mV
Amperometric Input: Polarization Voltage (selectable via rotary switch) Hydrogen Peroxide 450 mV
Amperometric Input: Polarization Voltage (selectable via rotary switch) Glucose 600 mV
Amperometric Input: Polarization Voltage (selectable via rotary switch) Oxygen 700 mV
Amperometric Input: Polarization Voltage (selectable via rotary switch) ADJ (user adjustable) ± 2500 mV
Polarization Voltage Accuracy ± 5 mV
Polarization Voltage Display Resolution ± 1mV
Current measurement Performance: 
Range  Analog Output Noise @ 3 Hz* Noise @ 0.3 Hz*
±10 Na 1 mV / 1 pA < 1 pA < 0.3 pA
± 100 nA 1 mV / 10pA < 7 pA < 3 pA
± 1 µA 1 mV / 100pA < 70 pA < 30 pA
±10 µA 1 mV / 1µA < 700 pA < 300 pA
Notes: *Instrument performance is measured as the (max-min) over 20 seconds period with open input. Typical values are given at 3 Hz and 0.3 Hz bandwidth.
Typical sensor performance with TBR4100: ISO-NOPF100 noise 0.2 nM NO (< 2pA **)
Notes: **Sensor noise is measured as the (max-min) over a 20 seconds period with the sensor immersed in 0.1 M CuCl2 solution.

Huang, P., Shen, Z., Yu, W., Huang, Y., Tang, C., Du, J., & Jin, H. (2017). Hydrogen Sulfide Inhibits High-Salt Diet-Induced Myocardial Oxidative Stress and Myocardial Hypertrophy in Dahl Rats. Frontiers in Pharmacology, 8, 128. https://doi.org/10.3389/fphar.2017.00128 

Murine strain differences in inflammatory angiogenesis of internal wound in diabetes. (2017). Biomedicine & Pharmacotherapy, 86, 715–724. https://doi.org/10.1016/J.BIOPHA.2016.11.146 

Olson, K. R., DeLeon, E. R., Gao, Y., Hurley, K., Sadauskas, V., Batz, C., & Stoy, G. F. (2013). Thiosulfate: a readily accessible source of hydrogen sulfide in oxygen sensing. Am J Physiol Regul Integr Comp Physiol305, 592–603. http://doi.org/10.1152/ajpregu.00421.2012 

Young, L. H., Chen, Q., & Weis, M. T. (2011). Direct Measurement of Hydrogen Peroxide (H 2 O 2 ) or Nitric Oxide (NO) Release: A Powerful Tool to Assess Real-time Free Radical Production in Biological Models. Am. J. Biomed. Sci3(1), 40–48. http://doi.org/10.5099/aj110100040 

Xie, L., Feng, H., Li, S., Meng, G., Liu, S., Tang, X., … Ji, Y. (2016). SIRT3 Mediates the Antioxidant Effect of Hydrogen Sulfide in Endothelial Cells. Antioxidants & Redox Signaling24(6), 329–343. http://doi.org/10.1089/ars.2015.6331 

Angiopreventive versus angiopromoting effects of allopurinol in the murine sponge model. (2015). Microvascular Research, 101, 118–126. https://doi.org/10.1016/J.MVR.2015.07.003 

Lateef, H., Aslam, M. N., Stevens, M. J., & Varani, J. (2005). Pretreatment of diabetic rats with lipoic acid improves healing of subsequently-induced abrasion wounds. Archives of Dermatological Research297(2), 75–83. http://doi.org/10.1007/s00403-005-0576-6 

Murine strain differences in inflammatory angiogenesis of internal wound in diabetes. (2017). Biomedicine & Pharmacotherapy86, 715–724. http://doi.org/10.1016/J.BIOPHA.2016.11.146 

Liu, J. T., Song, E., Xu, A., Berger, T., Mak, T. W., Tse, H.-F., … Wang, Y. (2012). Lipocalin-2 deficiency prevents endothelial dysfunction associated with dietary obesity: role of cytochrome P450 2C inhibition. British Journal of Pharmacology165(2), 520–531. http://doi.org/10.1111/j.1476-5381.2011.01587.x 

Nguyen, T.-K., Selvanayagam, R., Ho, K. K. K., Chen, R., Kutty, S. K., Rice, S. A., … Boyer, C. (2016). Co-delivery of nitric oxide and antibiotic using polymeric nanoparticles. Chem. Sci.7(2), 1016–1027. http://doi.org/10.1039/C5SC02769A 

Fox, B., Schantz, J.-T., Haigh, R., Wood, M. E., Moore, P. K., Viner, N., … Whiteman, M. (2012). Inducible hydrogen sulfide synthesis in chondrocytes and mesenchymal progenitor cells: is H2S a novel cytoprotective mediator in the inflamed joint? Journal of Cellular and Molecular Medicine16(4), 896–910. http://doi.org/10.1111/j.1582-4934.2011.01357.x 

Cho, Y., Park, Y. M., Barate, A. K., Park, S.-Y., Park, H. J., Lee, M. R., … Holden, D. (2015). The role of rpoS , hmp , and ssrAB in Salmonella enterica Gallinarum and evaluation of a triple-deletion mutant as a live vaccine candidate in Lohmann layer chickens. Journal of Veterinary Science16(2), 187. http://doi.org/10.4142/jvs.2015.16.2.187 

Orellano, L. A. A., Almeida, S. A., Campos, P. P., & Andrade, S. P. (2015). Angiopreventive versus angiopromoting effects of allopurinol in the murine sponge model. Microvascular Research101, 118–126. http://doi.org/10.1016/j.mvr.2015.07.003 

Zong, Y., Huang, Y., Chen, S., Zhu, M., Chen, Q., Feng, S., … Jin, H. (2015). Downregulation of Endogenous Hydrogen Sulfide Pathway Is Involved in Mitochondrion-Related Endothelial Cell Apoptosis Induced by High Salt. Oxidative Medicine and Cellular Longevity2015, 1–11. http://doi.org/10.1155/2015/754670 

Diniz, T., Pereira, A., Capettini, L., Santos, M., Nagem, T., Lemos, V., & Cortes, S. (2013). Mechanism of the Vasodilator Effect of Mono-oxygenated Xanthones: A Structure-Activity Relationship Study. Planta Medica79(16), 1495–1500. http://doi.org/10.1055/s-0033-1350803 

Diniz, T., Pereira, A., Capettini, L., Santos, M., Nagem, T., Lemos, V., & Cortes, S. (2013). Mechanism of the Vasodilator Effect of Mono-oxygenated Xanthones: A Structure-Activity Relationship Study. Planta Medica79(16), 1495–1500. http://doi.org/10.1055/s-0033-1350803 

Chen, G., Yang, L., Zhong, L., Kutty, S., Wang, Y., Cui, K., … Bin, J. (2016). Delivery of Hydrogen Sulfide by Ultrasound Targeted Microbubble Destruction Attenuates Myocardial Ischemia-reperfusion Injury. Scientific Reports6, 30643. http://doi.org/10.1038/srep30643 

Xu, T., Scafa, N., Xu, L.-P., Zhou, S., Abdullah Al-Ghanem, K., Mahboob, S., … Zhang, X. (2016). Electrochemical hydrogen sulfide biosensors. The Analyst141(4), 1185–1195. http://doi.org/10.1039/C5AN02208H 

Catalytic oxidation of sulphide species. (2012).

Process of food preservation with hydrogen sulfide. (2013).

Ultrasonic micro-droplet release of matrix bound food derived antimicrobials. (2016).

Apparatuses, methods, and compositions for the treatment and prophylaxis of chronic wounds. (2013).

Sanokawa-Akakura, R., Ostrakhovitch, E. A., Akakura, S., Goodwin, S., & Tabibzadeh, S. (2014). A H 2 S-Nampt Dependent Energetic Circuit Is Critical to Survival and Cytoprotection from Damage in Cancer Cells. http://doi.org/10.1371/journal.pone.0108537

Andrews, A. M. (2012). SHEAR STRESS-INDUCED NITRIC OXIDE (NO) PRODUCTION: MECHANISMS AND THE INHIBITORY EFFECT OF CHOLESTEROL ENRICHMENT.

 

91580 Microsensor Adapter Cable 
ISO-TEMP-2 Temperature Sensor
ISO-HPO-100 Hydrogen Peroxide Sensor
ISO-HPO-2 Hydrogen Peroxide Sensor
ISO-H2S-2 Hydrogen Sulfide Sensor
IGS100 Implantable Glucose Sensor
ISO-NOP Nitric Oxide Sensor
ISO-HPO-100-L Hydrogen Peroxide Sensor - 100μm
ISO-HPO-100-H Hydrogen Peroxide Sensor - 100μm with hypodermic sheath
ISO-NOPNM Nitric Oxide Sensor - 100nm
ISO-NOPF100 Nitric Oxide Sensor - 100μm
ISO-NOPF200-L10 Nitric Oxide Sensor - 200μm, L shaped
ISO-NOPF200 Nitric Oxide Sensor - 200μm
ISO-NOP3020 Nitric Oxide Sensor - 30μm
ISO-NOP3005 Nitric Oxide Sensor - 30μm
ISO-NOP30-L Nitric Oxide Sensor - 30μm
ISO-NOP007 Nitric Oxide Sensor - 7μm
ISO-NOP-70-L Nitric Oxide Sensor - 70μm, L shaped
ISO-OXY-2 Oxygen Sensor - 2mm
SNAP50 SNAP S-Nitroso-N-acetyl-D-penecillamine, 50 mg vial

 

 

« Go Back