Thin Wall Glass Capillaries

$58.00
Order code
VAR-3709

Quality glass capillaries at superior prices for microinjection and microelelctrodes

  • Quality borosilicate glass capillaries
  • Large variety available
  • Some varieties of fire polished capillary glass(See description)
  • OD/ID Tolerance: ±0.1 mm
  • Length Tolerance: ±1 mm

Thin-Wall Single-Barrel Standard Borosilicate (Schott Duran) Glass Tubing Options

Order code Length OD (mm) ID (mm) Filament Fire Polish Qty
TW100F-3 3 in. (76mm) 1.0 0.75   500
TW100-3   3 in. (76mm) 1.0 0.75     500
TW120F-3   3 in. (76mm) 1.2 0.90 400
TW120-3   3 in. (76mm) 1.2 0.90     350
TW150F-3   3 in. (76mm) 1.5 1.12   225
TW150-3   3 in. (76mm) 1.5 1.12   300
TW100F-4   4 in. (100mm) 1.0 0.75   500
TW100-4   4 in. (100mm) 1.0 0.75   500
TW120F-4   4 in. (100mm) 1.2 0.90   350
TW120-4   4 in. (100mm) 1.2 0.90     350
TW150F-4   4 in. (100mm) 1.5 1.12   225
TW150-4   4 in. (100mm) 1.5 1.12   300
TW100F-6   6 in. (152mm) 1.0 0.75   500
TW100-6   6 in. (152mm) 1.0 0.75   500
TW120F-6   6 in. (152mm) 1.2 0.90 400
TW120-6   6 in. (152mm) 1.2 0.90     350
TW150F-6   6 in. (152mm) 1.5 1.12   225
TW150-6   6 in. (152mm) 1.5 1.12   300

Benefits

  • Superior pricing
  • Most glass capillary orders ship within 48 hours

Applications

  • Microinjection
  • Electrophysiology
  • Patch clamp
  • Fluid Handling

Fire Polishing

Fire-Polished glass capillaries are easier to insert into microelectrode holders without damaging the gasket. More importantly, fire-polished glass capillaries won’t scratch the chloridized wire used in a recording electrode. Fire-polishing does not affect the glass’s mechanical or electrical properties.

Making Uniform, Reproducible Microelectrodes

Borosilicate glass capillaries: Close di­men­sion­al tol­er­anc­es assure mi­cro­elec­trode uni­for­mi­ty and reproducibility. Glass capillaries are available in 1, 2, 3, 5 and 7-barrel con­fig­u­ra­tions, complete range of single bar­rel thin-wall siz­es and a variety of special con­fig­u­ra­tions. Glass cap­il­lar­ies with filaments con­tain a solid fil­a­ment fused to the inner wall, which speeds filling of electrodes. Glass cap­il­lar­ies with or with­out inner filaments are available for making microelectrodes in a wide range of diameters.

Capillary Glass with Filament

Single Barrel standard wall thickness glass cap­il­lar­ies are offered either with or without in­ner fil­a­ments for quick filling in a variety of lengths and diameters.

Thin Wall Glass Capillaries

Thin Wall single barrel glass capillaries are of­fered both with or without inner filaments.

 

NOTE: Because electrode tips erode when left filled with saline solutions for long periods, electrodes should be made and filled immediately prior to use. 


More Information on Glass Capillary

Buying Multi-Barrel Glass Capillaries
Buying Capillaries for Making Micropipettes and Microelectrodes

Download the catalog page.

 

 

Henao-Mejia, J., Williams, A., Rongvaux, A., Stein, J., Hughes, C., & Flavell, R. A. (2016). Generation of Genetically Modified Mice Using the CRISPR-Cas9 Genome-Editing System. Cold Spring Harbor Protocols, 2016(2), pdb.prot090704. http://doi.org/10.1101/pdb.prot090704 

Xie, Y., Zhou, Y., Xi, W., Zeng, F., & Chen, S. (2016). Fabrication of a Cell Fixation Device for Robotic Cell Microinjection. Micromachines, 7(8), 131. http://doi.org/10.3390/mi7080131

Engerer, P., Plucinska, G., Thong, R., Trovò, L., Paquet, D., & Godinho, L. (2016). Imaging Subcellular Structures in the Living Zebrafish Embryo. Journal of Visualized Experiments, (110), e53456–e53456. http://doi.org/10.3791/53456

Vidal, G. S., Djurisic, M., Brown, K., Sapp, R. W., & Shatz, C. J. (2016). Cell-Autonomous Regulation of Dendritic Spine Density by PirB. eNeuro, 3(5). http://doi.org/10.1523/ENEURO.0089-16.2016

Lai, J., Legault, M.-A., Thomas, S., & Casanova, C. (2015). Simultaneous Electrophysiological Recording and Micro-injections of Inhibitory Agents in the Rodent Brain. Journal of Visualized Experiments, (101), e52271–e52271. http://doi.org/10.3791/52271

Smith, S. J., Horstick, E. J., Davidson, A. E., & Dowling, J. (2015). Analysis of Zebrafish Larvae Skeletal Muscle Integrity with Evans Blue Dye. Journal of Visualized Experiments, (105), e53183–e53183. http://doi.org/10.3791/53183

Lundgaard, I., Li, B., Xie, L., Kang, H., Sanggaard, S., Haswell, J. D. R., … Nedergaard, M. (2015). Direct neuronal glucose uptake heralds activity-dependent increases in cerebral metabolism. Nature Communications, 6, 6807. http://doi.org/10.1038/ncomms7807

Deline, M., Keller, J., Rothe, M., Schunck, W.-H., Menzel, R., & Watts, J. L. (2015). Epoxides Derived from Dietary Dihomo-Gamma-Linolenic Acid Induce Germ Cell Death in C. elegans. Scientific Reports, 5, 15417. http://doi.org/10.1038/srep15417

Jarriault, D., & Grosmaitre, X. (2015). Perforated Patch-clamp Recording of Mouse Olfactory Sensory Neurons in Intact Neuroepithelium: Functional Analysis of Neurons Expressing an Identified Odorant Receptor. Journal of Visualized Experiments, (101), e52652–e52652. http://doi.org/10.3791/52652

Leslie, J. L., Huang, S., Opp, J. S., Nagy, M. S., Kobayashi, M., Young, V. B., & Spence, J. R. (2015). Persistence and toxin production by Clostridium difficile within human intestinal organoids result in disruption of epithelial paracellular barrier function. Infection and Immunity, 83(1), 138–45. http://doi.org/10.1128/IAI.02561-14

Konantz, J., & Antos, C. L. (2014). Reverse Genetic Morpholino Approach Using Cardiac Ventricular Injection to Transfect Multiple Difficult-to-target Tissues in the Zebrafish Larva. Journal of Visualized Experiments, (88), e51595–e51595. http://doi.org/10.3791/51595

Thomson, S. J., Hansen, A., & Sanguinetti, M. C. (2014). Concerted all-or-none subunit interactions mediate slow deactivation of human ether-à-go-go-related gene K+ channels. The Journal of Biological Chemistry, 289(34), 23428–36. http://doi.org/10.1074/jbc.M114.582437

Voigt, D., Konrad, W., & Gorb, S. (2014). A universal glue: underwater adhesion of the secretion of the carnivorous flypaper plant Roridula gorgonias. Interface Focus, 5(1).

Walton, K. D., & Kolterud, Å. (2014). Mouse Fetal Whole Intestine Culture System for <em>Ex Vivo</em> Manipulation of Signaling Pathways and Three-dimensional Live Imaging of Villus Development. Journal of Visualized Experiments, (91), e51817–e51817. http://doi.org/10.3791/51817

Harms, D. W., Quadros, R. M., Seruggia, D., Ohtsuka, M., Takahashi, G., Montoliu, L., & Gurumurthy, C. B. (2014). Mouse Genome Editing Using the CRISPR/Cas System. Current Protocols in Human Genetics, 83, 15.7.1-27. http://doi.org/10.1002/0471142905.hg1507s83

Wang, R., Palavicini, J. P., Wang, H., Maiti, P., Bianchi, E., Xu, S., … Lakshmana, M. K. (2014). RanBP9 overexpression accelerates loss of dendritic spines in a mouse model of Alzheimer’s disease. Neurobiology of Disease, 69, 169–79. http://doi.org/10.1016/j.nbd.2014.05.029

Jang, J., Um, K. B., Jang, M., Kim, S. H., Cho, H., Chung, S., … Park, M. K. (2014). Balance between the proximal dendritic compartment and the soma determines spontaneous firing rate in midbrain dopamine neurons. The Journal of Physiology, 592(13), 2829–44. http://doi.org/10.1113/jphysiol.2014.275032

Tonini, R., Ferraro, T., Sampedro-Castañeda, M., Cavaccini, A., Stocker, M., Richards, C. D., & Pedarzani, P. (2013). Small-conductance Ca2+-activated K+ channels modulate action potential-induced Ca2+ transients in hippocampal neurons. Journal of Neurophysiology, 109(6), 1514–24. http://doi.org/10.1152/jn.00346.2012

Recording Pipettes. (2013). Cold Spring Harbor Protocols, 2013(2), pdb.rec073759-rec073759. http://doi.org/10.1101/pdb.rec073759

Yang, D., Zhang, J., Xu, J., Zhu, T., Fan, Y., Fan, J., & Chen, Y. E. (2013). Production of Apolipoprotein C-III Knockout Rabbits using Zinc Finger Nucleases. Journal of Visualized Experiments, (81), e50957–e50957. http://doi.org/10.3791/50957

Nemes, P., Rubakhin, S. S., Aerts, J. T., & Sweedler, J. V. (2013). Qualitative and quantitative metabolomic investigation of single neurons by capillary electrophoresis electrospray ionization mass spectrometry. Nature Protocols, 8(4), 783–99. http://doi.org/10.1038/nprot.2013.035

Johnston, L., Ball, R. E., Acuff, S., Gaudet, J., Sornborger, A., & Lauderdale, J. D. (2013). Electrophysiological Recording in the Brain of Intact Adult Zebrafish. Journal of Visualized Experiments, (81), e51065–e51065. http://doi.org/10.3791/51065

Layden, M. J., Röttinger, E., Wolenski, F. S., Gilmore, T. D., & Martindale, M. Q. (2013). Microinjection of mRNA or morpholinos for reverse genetic analysis in the starlet sea anemone, Nematostella vectensis. Nature Protocols, 8(5), 924–34. http://doi.org/10.1038/nprot.2013.009

Cao, Y., Pan, Y., Huang, H., Jin, X., Levin, E. J., Kloss, B., & Zhou, M. (2013). Gating of the TrkH ion channel by its associated RCK protein TrkA. Nature, 496(7445), 317–22. http://doi.org/10.1038/nature12056

Raissig, M. T., Gagliardini, V., Jaenisch, J., Grossniklaus, U., & Baroux, C. (2013). Efficient and Rapid Isolation of Early-stage Embryos from <em>Arabidopsis thaliana</em> Seeds. Journal of Visualized Experiments, (76), e50371–e50371. http://doi.org/10.3791/50371

Alfaqeeh, S. A., & Tucker, A. S. (2013). The Slice Culture Method for Following Development of Tooth Germs In Explant Culture. Journal of Visualized Experiments, (81), e50824–e50824. http://doi.org/10.3791/50824

Ludwar, B. C., Evans, C. G., & Cropper, E. C. (2012). Monitoring changes in the intracellular calcium concentration and synaptic efficacy in the mollusc Aplysia. Journal of Visualized Experiments : JoVE, (65), e3907. http://doi.org/10.3791/3907

Luo, J., Yan, X., Lin, J., & Rolfs, A. (2012). Gene transfer into older chicken embryos by ex ovo electroporation. Journal of Visualized Experiments : JoVE, (65). http://doi.org/10.3791/4078

Yang, B., Geary, L. B., & Ma, Y.-C. (2012). No Title, (66). http://doi.org/10.3791/4017

Veeman, M. T., Chiba, S., & Smith, W. C. (2011). Ciona genetics. Methods in Molecular Biology (Clifton, N.J.), 770, 401–22. http://doi.org/10.1007/978-1-61779-210-6_15

Kariu, T., Coleman, A. S., Anderson, J. F., & Pal, U. (2011). Methods for Rapid Transfer and Localization of Lyme Disease Pathogens Within the Tick Gut. Journal of Visualized Experiments, (48), e2544–e2544. http://doi.org/10.3791/2544

Gao, L., Kim, Y., Kim, B., Lofgren, S. M., Schultz-Norton, J. R., Nardulli, A. M., … Jorgensen, J. S. (2011). Two regions within the proximal steroidogenic factor 1 promoter drive somatic cell-specific activity in developing gonads of the female mouse. Biology of Reproduction, 84(3), 422–34. http://doi.org/10.1095/biolreprod.110.084590

Staton, A. A., & Giraldez, A. J. (2011). Use of target protector morpholinos to analyze the physiological roles of specific miRNA-mRNA pairs in vivo. Nature Protocols, 6(12), 2035–49. http://doi.org/10.1038/nprot.2011.423

Farah, C. A., & Sossin, W. S. (2011). No Title, (50), e2516–e2516. http://doi.org/10.3791/2516

Goldman, N., Chen, M., Fujita, T., Xu, Q., Peng, W., Liu, W., … Nedergaard, M. (2010). Adenosine A1 receptors mediate local anti-nociceptive effects of acupuncture. Nature Neuroscience, 13(7), 883–8. http://doi.org/10.1038/nn.2562

Shen, Z. L., Dodge, M. R., Kahn, H., Ballarini, R., & Eppell, S. J. (2010). In vitro fracture testing of submicron diameter collagen fibril specimens. Biophysical Journal, 99(6), 1986–95. http://doi.org/10.1016/j.bpj.2010.07.021

Clemons, A., Haugen, M., Severson, D., & Duman-Scheel, M. (2010). Functional analysis of genes in Aedes aegypti embryos. Cold Spring Harbor Protocols, 2010(10), pdb.prot5511. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/20889708

Stofanko, M., Kwon, S. Y., & Badenhorst, P. (2010). Lineage tracing of lamellocytes demonstrates Drosophila macrophage plasticity. PloS One, 5(11), e14051. http://doi.org/10.1371/journal.pone.0014051

Russek-Blum, N., Nabel-Rosen, H., & Levkowitz, G. (2010). Two-Photon-Based Photoactivation in Live Zebrafish Embryos. Journal of Visualized Experiments, (46), e1902–e1902. http://doi.org/10.3791/1902

Kumar, V., Alla, S. R., Krishnan, K. S., & Ramaswami, M. (2009). Syndapin is dispensable for synaptic vesicle endocytosis at the Drosophila larval neuromuscular junction. Molecular and Cellular Neurosciences, 40(2), 234–41. http://doi.org/10.1016/j.mcn.2008.10.011

Wang, X., Takano, T., & Nedergaard, M. (2009). Astrocytic calcium signaling: mechanism and implications for functional brain imaging. Methods in Molecular Biology (Clifton, N.J.), 489, 93–109. http://doi.org/10.1007/978-1-59745-543-5_5

Werren, J. H., Loehlin, D. W., & Giebel, J. D. (2009). Larval RNAi in Nasonia (parasitoid wasp). Cold Spring Harbor Protocols, 2009(10), pdb.prot5311. http://doi.org/10.1101/pdb.prot5311

Imlach, W., & McCabe, B. D. (2009). Electrophysiological Methods for Recording Synaptic Potentials from the NMJ of Drosophila Larvae. Journal of Visualized Experiments, (24), e1109–e1109. http://doi.org/10.3791/1109

Werren, J. H., & Loehlin, D. W. (2009). The parasitoid wasp Nasonia: an emerging model system with haploid male genetics. Cold Spring Harbor Protocols, 2009(10), pdb.emo134. http://doi.org/10.1101/pdb.emo134

Chen, K., Augustin, H., & Featherstone, D. E. (2009). No Title, 195(1). http://doi.org/10.1007/s00359-008-0378-3

Stofanko, M., Kwon, S. Y., & Badenhorst, P. (2008). A misexpression screen to identify regulators of Drosophila larval hemocyte development. Genetics, 180(1), 253–67. http://doi.org/10.1534/genetics.108.089094

Luo, J., & Redies, C. (2005). Ex ovo electroporation for gene transfer into older chicken embryos. Developmental Dynamics, 233(4), 1470–1477. http://doi.org/10.1002/dvdy.20454

Xi, Z., & Dobson, S. L. (2005). Characterization of Wolbachia transfection efficiency by using microinjection of embryonic cytoplasm and embryo homogenate. Applied and Environmental Microbiology, 71(6), 3199–204. http://doi.org/10.1128/AEM.71.6.3199-3204.2005

Jerng, H. H., Qian, Y., & Pfaffinger, P. J. (2004). Modulation of Kv4.2 channel expression and gating by dipeptidyl peptidase 10 (DPP10). Biophysical Journal, 87(4), 2380–96. http://doi.org/10.1529/biophysj.104.042358

Gómez-Viquez, L., Guerrero-Serna, G., García, U., & Guerrero-Hernández, A. (2003). SERCA pump optimizes Ca2+ release by a mechanism independent of store filling in smooth muscle cells. Biophysical Journal, 85(1), 370–80. http://doi.org/10.1016/S0006-3495(03)74481-6

 

 

Frequently Purchased
©Copyright 2020. World Precision Instruments. All rights reserved.

Apply for Tax Exempt Status
WPI collects tax in AL, AZ, CA, CO, CT, DC, FL, GA, IL, IN, MA, ME, MD, MI, MN, MO, NC, NV, NJ, NY, OH, OK, PA, SC, TN, TX, VA, VT, WA and WI