Thin Wall Glass Capillaries
Quality glass capillaries at superior prices for microinjection and microelelctrodes
- Quality borosilicate glass capillaries
- Large variety available
- Some varieties of fire polished capillary glass(See description)
- OD/ID Tolerance: ±0.1 mm
- Length Tolerance: ±1 mm
Thin-Wall Single-Barrel Standard Borosilicate (Schott Duran) Glass Tubing Options
Order code | Length | OD (mm) | ID (mm) | Filament | Fire Polish | Qty |
---|---|---|---|---|---|---|
TW100F-3 | 3 in. (76mm) | 1.0 | 0.75 | • | 500 | |
TW100-3 | 3 in. (76mm) | 1.0 | 0.75 | 500 | ||
TW120F-3 | 3 in. (76mm) | 1.2 | 0.90 | • | • | 400 |
TW120-3 | 3 in. (76mm) | 1.2 | 0.90 | 350 | ||
TW150F-3 | 3 in. (76mm) | 1.5 | 1.12 | • | 225 | |
TW150-3 | 3 in. (76mm) | 1.5 | 1.12 | • | 300 | |
TW100F-4 | 4 in. (100mm) | 1.0 | 0.75 | • | 500 | |
TW100-4 | 4 in. (100mm) | 1.0 | 0.75 | • | 500 | |
TW120F-4 | 4 in. (100mm) | 1.2 | 0.90 | • | 350 | |
TW120-4 | 4 in. (100mm) | 1.2 | 0.90 | 350 | ||
TW150F-4 | 4 in. (100mm) | 1.5 | 1.12 | • | 225 | |
TW150-4 | 4 in. (100mm) | 1.5 | 1.12 | • | 300 | |
TW100F-6 | 6 in. (152mm) | 1.0 | 0.75 | • | 500 | |
TW100-6 | 6 in. (152mm) | 1.0 | 0.75 | • | 500 | |
TW120F-6 | 6 in. (152mm) | 1.2 | 0.90 | • | • | 400 |
TW120-6 | 6 in. (152mm) | 1.2 | 0.90 | 350 | ||
TW150F-6 | 6 in. (152mm) | 1.5 | 1.12 | • | 225 | |
TW150-6 | 6 in. (152mm) | 1.5 | 1.12 | • | 300 |
Benefits
- Superior pricing
- Most glass capillary orders ship within 48 hours
Applications
- Microinjection
- Electrophysiology
- Patch clamp
- Fluid Handling
Fire Polishing
Fire-Polished glass capillaries are easier to insert into microelectrode holders without damaging the gasket. More importantly, fire-polished glass capillaries won’t scratch the chloridized wire used in a recording electrode. Fire-polishing does not affect the glass’s mechanical or electrical properties.
Making Uniform, Reproducible Microelectrodes
Borosilicate glass capillaries: Close dimensional tolerances assure microelectrode uniformity and reproducibility. Glass capillaries are available in 1, 2, 3, 5 and 7-barrel configurations, complete range of single barrel thin-wall sizes and a variety of special configurations. Glass capillaries with filaments contain a solid filament fused to the inner wall, which speeds filling of electrodes. Glass capillaries with or without inner filaments are available for making microelectrodes in a wide range of diameters.
Capillary Glass with Filament
Single Barrel standard wall thickness glass capillaries are offered either with or without inner filaments for quick filling in a variety of lengths and diameters.
Thin Wall Glass Capillaries
Thin Wall single barrel glass capillaries are offered both with or without inner filaments.
NOTE: Because electrode tips erode when left filled with saline solutions for long periods, electrodes should be made and filled immediately prior to use.
More Information on Glass Capillary
Buying Multi-Barrel Glass Capillaries
Buying Capillaries for Making Micropipettes and Microelectrodes
Henao-Mejia, J., Williams, A., Rongvaux, A., Stein, J., Hughes, C., & Flavell, R. A. (2016). Generation of Genetically Modified Mice Using the CRISPR-Cas9 Genome-Editing System. Cold Spring Harbor Protocols, 2016(2), pdb.prot090704. http://doi.org/10.1101/pdb.prot090704
Xie, Y., Zhou, Y., Xi, W., Zeng, F., & Chen, S. (2016). Fabrication of a Cell Fixation Device for Robotic Cell Microinjection. Micromachines, 7(8), 131. http://doi.org/10.3390/mi7080131
Engerer, P., Plucinska, G., Thong, R., Trovò, L., Paquet, D., & Godinho, L. (2016). Imaging Subcellular Structures in the Living Zebrafish Embryo. Journal of Visualized Experiments, (110), e53456–e53456. http://doi.org/10.3791/53456
Vidal, G. S., Djurisic, M., Brown, K., Sapp, R. W., & Shatz, C. J. (2016). Cell-Autonomous Regulation of Dendritic Spine Density by PirB. eNeuro, 3(5). http://doi.org/10.1523/ENEURO.0089-16.2016
Lai, J., Legault, M.-A., Thomas, S., & Casanova, C. (2015). Simultaneous Electrophysiological Recording and Micro-injections of Inhibitory Agents in the Rodent Brain. Journal of Visualized Experiments, (101), e52271–e52271. http://doi.org/10.3791/52271
Smith, S. J., Horstick, E. J., Davidson, A. E., & Dowling, J. (2015). Analysis of Zebrafish Larvae Skeletal Muscle Integrity with Evans Blue Dye. Journal of Visualized Experiments, (105), e53183–e53183. http://doi.org/10.3791/53183
Lundgaard, I., Li, B., Xie, L., Kang, H., Sanggaard, S., Haswell, J. D. R., … Nedergaard, M. (2015). Direct neuronal glucose uptake heralds activity-dependent increases in cerebral metabolism. Nature Communications, 6, 6807. http://doi.org/10.1038/ncomms7807
Deline, M., Keller, J., Rothe, M., Schunck, W.-H., Menzel, R., & Watts, J. L. (2015). Epoxides Derived from Dietary Dihomo-Gamma-Linolenic Acid Induce Germ Cell Death in C. elegans. Scientific Reports, 5, 15417. http://doi.org/10.1038/srep15417
Jarriault, D., & Grosmaitre, X. (2015). Perforated Patch-clamp Recording of Mouse Olfactory Sensory Neurons in Intact Neuroepithelium: Functional Analysis of Neurons Expressing an Identified Odorant Receptor. Journal of Visualized Experiments, (101), e52652–e52652. http://doi.org/10.3791/52652
Leslie, J. L., Huang, S., Opp, J. S., Nagy, M. S., Kobayashi, M., Young, V. B., & Spence, J. R. (2015). Persistence and toxin production by Clostridium difficile within human intestinal organoids result in disruption of epithelial paracellular barrier function. Infection and Immunity, 83(1), 138–45. http://doi.org/10.1128/IAI.02561-14
Konantz, J., & Antos, C. L. (2014). Reverse Genetic Morpholino Approach Using Cardiac Ventricular Injection to Transfect Multiple Difficult-to-target Tissues in the Zebrafish Larva. Journal of Visualized Experiments, (88), e51595–e51595. http://doi.org/10.3791/51595
Thomson, S. J., Hansen, A., & Sanguinetti, M. C. (2014). Concerted all-or-none subunit interactions mediate slow deactivation of human ether-à-go-go-related gene K+ channels. The Journal of Biological Chemistry, 289(34), 23428–36. http://doi.org/10.1074/jbc.M114.582437
Voigt, D., Konrad, W., & Gorb, S. (2014). A universal glue: underwater adhesion of the secretion of the carnivorous flypaper plant Roridula gorgonias. Interface Focus, 5(1).
Walton, K. D., & Kolterud, Å. (2014). Mouse Fetal Whole Intestine Culture System for <em>Ex Vivo</em> Manipulation of Signaling Pathways and Three-dimensional Live Imaging of Villus Development. Journal of Visualized Experiments, (91), e51817–e51817. http://doi.org/10.3791/51817
Harms, D. W., Quadros, R. M., Seruggia, D., Ohtsuka, M., Takahashi, G., Montoliu, L., & Gurumurthy, C. B. (2014). Mouse Genome Editing Using the CRISPR/Cas System. Current Protocols in Human Genetics, 83, 15.7.1-27. http://doi.org/10.1002/0471142905.hg1507s83
Wang, R., Palavicini, J. P., Wang, H., Maiti, P., Bianchi, E., Xu, S., … Lakshmana, M. K. (2014). RanBP9 overexpression accelerates loss of dendritic spines in a mouse model of Alzheimer’s disease. Neurobiology of Disease, 69, 169–79. http://doi.org/10.1016/j.nbd.2014.05.029
Jang, J., Um, K. B., Jang, M., Kim, S. H., Cho, H., Chung, S., … Park, M. K. (2014). Balance between the proximal dendritic compartment and the soma determines spontaneous firing rate in midbrain dopamine neurons. The Journal of Physiology, 592(13), 2829–44. http://doi.org/10.1113/jphysiol.2014.275032
Tonini, R., Ferraro, T., Sampedro-Castañeda, M., Cavaccini, A., Stocker, M., Richards, C. D., & Pedarzani, P. (2013). Small-conductance Ca2+-activated K+ channels modulate action potential-induced Ca2+ transients in hippocampal neurons. Journal of Neurophysiology, 109(6), 1514–24. http://doi.org/10.1152/jn.00346.2012
Recording Pipettes. (2013). Cold Spring Harbor Protocols, 2013(2), pdb.rec073759-rec073759. http://doi.org/10.1101/pdb.rec073759
Yang, D., Zhang, J., Xu, J., Zhu, T., Fan, Y., Fan, J., & Chen, Y. E. (2013). Production of Apolipoprotein C-III Knockout Rabbits using Zinc Finger Nucleases. Journal of Visualized Experiments, (81), e50957–e50957. http://doi.org/10.3791/50957
Nemes, P., Rubakhin, S. S., Aerts, J. T., & Sweedler, J. V. (2013). Qualitative and quantitative metabolomic investigation of single neurons by capillary electrophoresis electrospray ionization mass spectrometry. Nature Protocols, 8(4), 783–99. http://doi.org/10.1038/nprot.2013.035
Johnston, L., Ball, R. E., Acuff, S., Gaudet, J., Sornborger, A., & Lauderdale, J. D. (2013). Electrophysiological Recording in the Brain of Intact Adult Zebrafish. Journal of Visualized Experiments, (81), e51065–e51065. http://doi.org/10.3791/51065
Layden, M. J., Röttinger, E., Wolenski, F. S., Gilmore, T. D., & Martindale, M. Q. (2013). Microinjection of mRNA or morpholinos for reverse genetic analysis in the starlet sea anemone, Nematostella vectensis. Nature Protocols, 8(5), 924–34. http://doi.org/10.1038/nprot.2013.009
Cao, Y., Pan, Y., Huang, H., Jin, X., Levin, E. J., Kloss, B., & Zhou, M. (2013). Gating of the TrkH ion channel by its associated RCK protein TrkA. Nature, 496(7445), 317–22. http://doi.org/10.1038/nature12056
Raissig, M. T., Gagliardini, V., Jaenisch, J., Grossniklaus, U., & Baroux, C. (2013). Efficient and Rapid Isolation of Early-stage Embryos from <em>Arabidopsis thaliana</em> Seeds. Journal of Visualized Experiments, (76), e50371–e50371. http://doi.org/10.3791/50371
Alfaqeeh, S. A., & Tucker, A. S. (2013). The Slice Culture Method for Following Development of Tooth Germs In Explant Culture. Journal of Visualized Experiments, (81), e50824–e50824. http://doi.org/10.3791/50824
Ludwar, B. C., Evans, C. G., & Cropper, E. C. (2012). Monitoring changes in the intracellular calcium concentration and synaptic efficacy in the mollusc Aplysia. Journal of Visualized Experiments : JoVE, (65), e3907. http://doi.org/10.3791/3907
Luo, J., Yan, X., Lin, J., & Rolfs, A. (2012). Gene transfer into older chicken embryos by ex ovo electroporation. Journal of Visualized Experiments : JoVE, (65). http://doi.org/10.3791/4078
Yang, B., Geary, L. B., & Ma, Y.-C. (2012). No Title, (66). http://doi.org/10.3791/4017
Veeman, M. T., Chiba, S., & Smith, W. C. (2011). Ciona genetics. Methods in Molecular Biology (Clifton, N.J.), 770, 401–22. http://doi.org/10.1007/978-1-61779-210-6_15
Kariu, T., Coleman, A. S., Anderson, J. F., & Pal, U. (2011). Methods for Rapid Transfer and Localization of Lyme Disease Pathogens Within the Tick Gut. Journal of Visualized Experiments, (48), e2544–e2544. http://doi.org/10.3791/2544
Gao, L., Kim, Y., Kim, B., Lofgren, S. M., Schultz-Norton, J. R., Nardulli, A. M., … Jorgensen, J. S. (2011). Two regions within the proximal steroidogenic factor 1 promoter drive somatic cell-specific activity in developing gonads of the female mouse. Biology of Reproduction, 84(3), 422–34. http://doi.org/10.1095/biolreprod.110.084590
Staton, A. A., & Giraldez, A. J. (2011). Use of target protector morpholinos to analyze the physiological roles of specific miRNA-mRNA pairs in vivo. Nature Protocols, 6(12), 2035–49. http://doi.org/10.1038/nprot.2011.423
Farah, C. A., & Sossin, W. S. (2011). No Title, (50), e2516–e2516. http://doi.org/10.3791/2516
Goldman, N., Chen, M., Fujita, T., Xu, Q., Peng, W., Liu, W., … Nedergaard, M. (2010). Adenosine A1 receptors mediate local anti-nociceptive effects of acupuncture. Nature Neuroscience, 13(7), 883–8. http://doi.org/10.1038/nn.2562
Shen, Z. L., Dodge, M. R., Kahn, H., Ballarini, R., & Eppell, S. J. (2010). In vitro fracture testing of submicron diameter collagen fibril specimens. Biophysical Journal, 99(6), 1986–95. http://doi.org/10.1016/j.bpj.2010.07.021
Clemons, A., Haugen, M., Severson, D., & Duman-Scheel, M. (2010). Functional analysis of genes in Aedes aegypti embryos. Cold Spring Harbor Protocols, 2010(10), pdb.prot5511. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/20889708
Stofanko, M., Kwon, S. Y., & Badenhorst, P. (2010). Lineage tracing of lamellocytes demonstrates Drosophila macrophage plasticity. PloS One, 5(11), e14051. http://doi.org/10.1371/journal.pone.0014051
Russek-Blum, N., Nabel-Rosen, H., & Levkowitz, G. (2010). Two-Photon-Based Photoactivation in Live Zebrafish Embryos. Journal of Visualized Experiments, (46), e1902–e1902. http://doi.org/10.3791/1902
Kumar, V., Alla, S. R., Krishnan, K. S., & Ramaswami, M. (2009). Syndapin is dispensable for synaptic vesicle endocytosis at the Drosophila larval neuromuscular junction. Molecular and Cellular Neurosciences, 40(2), 234–41. http://doi.org/10.1016/j.mcn.2008.10.011
Wang, X., Takano, T., & Nedergaard, M. (2009). Astrocytic calcium signaling: mechanism and implications for functional brain imaging. Methods in Molecular Biology (Clifton, N.J.), 489, 93–109. http://doi.org/10.1007/978-1-59745-543-5_5
Werren, J. H., Loehlin, D. W., & Giebel, J. D. (2009). Larval RNAi in Nasonia (parasitoid wasp). Cold Spring Harbor Protocols, 2009(10), pdb.prot5311. http://doi.org/10.1101/pdb.prot5311
Imlach, W., & McCabe, B. D. (2009). Electrophysiological Methods for Recording Synaptic Potentials from the NMJ of Drosophila Larvae. Journal of Visualized Experiments, (24), e1109–e1109. http://doi.org/10.3791/1109
Werren, J. H., & Loehlin, D. W. (2009). The parasitoid wasp Nasonia: an emerging model system with haploid male genetics. Cold Spring Harbor Protocols, 2009(10), pdb.emo134. http://doi.org/10.1101/pdb.emo134
Chen, K., Augustin, H., & Featherstone, D. E. (2009). No Title, 195(1). http://doi.org/10.1007/s00359-008-0378-3
Stofanko, M., Kwon, S. Y., & Badenhorst, P. (2008). A misexpression screen to identify regulators of Drosophila larval hemocyte development. Genetics, 180(1), 253–67. http://doi.org/10.1534/genetics.108.089094
Luo, J., & Redies, C. (2005). Ex ovo electroporation for gene transfer into older chicken embryos. Developmental Dynamics, 233(4), 1470–1477. http://doi.org/10.1002/dvdy.20454
Xi, Z., & Dobson, S. L. (2005). Characterization of Wolbachia transfection efficiency by using microinjection of embryonic cytoplasm and embryo homogenate. Applied and Environmental Microbiology, 71(6), 3199–204. http://doi.org/10.1128/AEM.71.6.3199-3204.2005
Jerng, H. H., Qian, Y., & Pfaffinger, P. J. (2004). Modulation of Kv4.2 channel expression and gating by dipeptidyl peptidase 10 (DPP10). Biophysical Journal, 87(4), 2380–96. http://doi.org/10.1529/biophysj.104.042358
Gómez-Viquez, L., Guerrero-Serna, G., García, U., & Guerrero-Hernández, A. (2003). SERCA pump optimizes Ca2+ release by a mechanism independent of store filling in smooth muscle cells. Biophysical Journal, 85(1), 370–80. http://doi.org/10.1016/S0006-3495(03)74481-6