Micropressure System

$25,730.00
Order code
SYS-900A

Measure hydrostatic pressure in small vessels and oocytes

  • Utilizes a liquid filled micropipette (2–5 µm tip opening) for sensing pressure
  • Pressure range from 1–100 mmHg (pressure range to 350 mmHg is available)
  • Lower limit 1 mmHg (133 Pa)
  • Includes calibration/test chamber
  • Tubing and fittings for interconnecting system sub-components are provided
  • Pressure in the pipette can be manually set to positive or negative relative to the outside
  • Probe holder for mounting on micromanipulator is included
  • 10 pre-pulled pipettes are included

This 900A video series of 6 videos is designed to help familiarize you with the basic operation of the 900A Micropressure System. The 900A was designed for measuring pressures in kidney tubules, and it has many applications. It has recently been used for measuring vetricular blood.

See the current data sheet.

Benefits

  • Measures biological pressures in very small liquid (aqueous) filled spaces
  • Pre-configured pipettes are available for convenience

Applications

  • Pressure in kidney tubules
  • Embryonic blood pressure
  • Intracellular pressure
  • Mouse intraocular pressure

The 900A system is designed to measure liquid pressures dynamically in aqueous biological micro-environments, such as in kidney tubules or intracellular pressures. A liquid filled micropipette is used as a pressure probe, and pressure external to the pipette is measured at the tip. The outside diameter of the micropipette tip typically measures between 2–7μm. Pressure measurement is achieved by monitoring the pipette’s electrical resistance. The resistance changes according to changes in the pressure outside the pipette tip via displacement of an electrolyte concentration gradient. As the position of the concentration gradient changes, the resistance of the pipette changes. The resistance signal from the pipette is used as feedback to control a pressure source that applies pressure to the inside of the pipette to counterbalance pressure from the outside. The feedback loop forces the gradient to a neutral balance point, which is user-defined at atmospheric pressure beforehand. The internal pressure required to equally balance the external pressure to the neutral point is readily measured, and it is converted into an analog voltage available at the pressure output BNC and displayed numerically on the LED meter.

System Requirements:

The 900A requires stable sources of both pressure and vacuum, which are essential for the system to rapidly counteract changing pressures encountered at the pipette tip. Pressure and vacuum sources are not provided with the 900A instrument because some labs are already equipped with suitable sources of pressure and vacuum. For researchers who do not possess pressure or vacuum sources, a cylinder of compressed air or inert gas with a dual stage regulator serves very well as a pressure source. Vacuum must be very stable. It is often best supplied by a quality vacuum pump. WPI offers a very quiet continuous duty vacuum pump well suited for use with the system. In addition, a vacuum regulation kit is recommended to fine tune the vacuum source to the ideal level (900A-VAC).

A manometer or meter for independent pressure measurement is necessary to calibrate the pressure and vacuum sources, as well as for validation of the performance of the 900A system prior to experimental use. A pressure measurement device capable of measuring within a range of +300 mmHg and –150 mmHg is recommended (PM015D or PM015R). For system performance validation at pressures well below 100 mmHg, the PM01D or PM01R is recommended, because it provides higher resolution at low pressure.

For transient response performance evaluation, a rapid burst of air or water pressure is required. WPI’s PV830 or PV820 series PicoPumps provide this capability. Rapidly occurring transient pressure measurements are typically captured on a data acquisition system. For details about testing and measurement of rapidly occurring pressure phenomena, contact a WPI sales representative for additional information.

Electric potential

Measuring electric potential and pressure simultaneously lets you use potential recording as an additional cue for locating the electrode where visibility is limited, or correlate pressure and potential when this is meaningful. The unique “Set Pressure” mode lets you preset the internal pressure of the microelectrode - select a positive pressure for flushing the tip, or a negative pressure for pulling solution into the tip. By disconnecting the microelectrode holder and attaching the tubing to a manometer, you can check the calibration against a standard.

Built-in alarm

A built-in alarm sounds to indicate maximum pressure. The alarm also sounds when the tip is blocked or electrical continuity is broken (e.g., the microelectrode comes out of the solution, too little filling solution to cover the Ag/AgCl pellet, disconnected ground reference, etc.).

Piezoelectric pressure controller

The piezoelectric pressure controller regulates internal pipette pressure by controlling air flow into and out of a small pressure chamber. A vacuum source is connected on the outlet side of the chamber, and a piezoelectric valve meters air entering the pressurized chamber. The residual volume of the pressure chamber includes the micropipette, the connecting tubing and the pressure transducer on the outlet side of the piezoelectric valve. The 900A accurately controls and adjusts the pressure in the chamber to match pressures applied externally to the microelectrode tip. The response time of the piezoelectric valve is 0.5?ms from fully closed to fully open. Overall system response time depends largely on the amount of residual volume in the tubing. When this volume is small, the system responds very rapidly (typically 10 milliseconds).

Minimize dead space

The lightweight pressure controller pod may be mounted close to the microelectrode using small-bore tubing, to minimize system dead space.

Note

Microelectrode holders MEH6RF and MEH6SF for 1.0mm O.D. capillary glass included. (1.2, 1.5 and 2.0mm also available - please specify when or­dering.)

Pressure Range 0–100 mmHg
Linearity < ±0.5% from a straight line
Stability ±0.1 mmHg up to 1 hour or more
Accuracy ±0.5% of full scale
Rise time >10 ms (10–90%), depending on residual volume
Output (“Pressure Signal”) 10 mV/mmHg
Amplifier Probe Input Resistance >1010Ω, Voltage Gain 1.0
Dimensions
Main Frame 17 x 5.25 x 10 in. (43.2 x 13.3 x 25.4cm)
Pressure Pod 3.7 x 1 x 2.25 in. (9.4 x 2.5 x 5.7cm)
Power 110 VAC/220 VAC

 

 

Warmerdam, T., Schröder, F., Wit, H., & Albers, F. (n.d.). Perilymphatic and endolymphatic pressures during endolymphatic hydrops. European Archives of Oto-Rhino-Laryngology, 260(1), 9–11. https://doi.org/10.1007/s00405-002-0518-2

Inamoto, R., Miyashita, T., Matsubara, A., Hoshikawa, H., & Mori, N. (2017). The difference in endolymphatic hydrostatic pressure elevation induced by isoproterenol between the ampulla and the cochlea. Auris Nasus Larynx, 44(3), 282–287. https://doi.org/10.1016/J.ANL.2016.07.018

Petrie, R. J., Harlin, H. M., Korsak, L. I. T., & Yamada, K. M. (2017). Activating the nuclear piston mechanism of 3D migration in tumor cells. The Journal of Cell Biology, 216(1), 93–100. https://doi.org/10.1083/jcb.201605097

Wei, J., Song, J., Jiang, S., Zhang, G., Wheeler, D., Zhang, J., … Liu, R. (2017). Role of intratubular pressure during the ischemic phase in acute kidney injury. American Journal of Physiology-Renal Physiology, 312(6), F1158–F1165. https://doi.org/10.1152/ajprenal.00527.2016

Inamoto, R., Miyashita, T., Matsubara, A., Hoshikawa, H., & Mori, N. (2017). The difference in endolymphatic hydrostatic pressure elevation induced by isoproterenol between the ampulla and the cochlea. Auris Nasus Larynx, 44(3), 282–287. https://doi.org/10.1016/j.anl.2016.07.018

Wei, J., Song, J., Jiang, S., Zhang, G., Wheeler, D., Zhang, J., … Liu, R. (2017). Role of intratubular pressure during the ischemic phase in acute kidney injury. American Journal of Physiology - Renal Physiology, 312(6), F1158–F1165. https://doi.org/10.1152/ajprenal.00527.2016

Chandra, S., Muir, E. R., Deo, K., Kiel, J. W., & Duong, T. Q. (2016). Effects of Dorzolamide on Retinal and Choroidal Blood Flow in the DBA/2J Mouse Model of Glaucoma. Investigative Opthalmology & Visual Science, 57(3), 826. https://doi.org/10.1167/iovs.15-18291

Lu, Y., Wei, J., Stec, D. E., Roman, R. J., Ge, Y., Cheng, L., … Liu, R. (2016). Macula Densa Nitric Oxide Synthase 1  Protects against Salt-Sensitive Hypertension. Journal of the American Society of Nephrology, 27(8), 2346–2356. https://doi.org/10.1681/ASN.2015050515

Goktas, S., Uslu, F. E., Kowalski, W. J., Ermek, E., Keller, B. B., & Pekkan, K. (2016). Time-Series Interactions of Gene Expression, Vascular Growth and Hemodynamics during Early Embryonic Arterial Development. PLOS ONE, 11(8), e0161611. https://doi.org/10.1371/journal.pone.0161611

Kiel, J. W., & Kopczynski, C. C. (2015). Effect of AR-13324 on Episcleral Venous Pressure in Dutch Belted Rabbits. Journal of Ocular Pharmacology and Therapeutics, 31(3), 146–151. https://doi.org/10.1089/jop.2014.0146

Mom, T., Pavier, Y., Giraudet, F., Gilain, L., & Avan, P. (2015). Measurement of endolymphatic pressure. European Annals of Otorhinolaryngology, Head and Neck Diseases, 132(2), 81–84. https://doi.org/10.1016/j.anorl.2014.05.004

Wang, H., D’Ambrosio, M. A., Ren, Y., Monu, S. R., Leung, P., Kutskill, K., … Carretero, O. A. (2015). Tubuloglomerular and connecting tubuloglomerular feedback during inhibition of various Na transporters in the nephron. American Journal of Physiology-Renal Physiology, 308(9), F1026–F1031. https://doi.org/10.1152/ajprenal.00605.2014

Petrie, R. J., Koo, H., & Yamada, K. M. (2014). Generation of compartmentalized pressure by a nuclear piston governs cell motility in a 3D matrix. Science, 345(6200), 1062–1065. https://doi.org/10.1126/science.1256965

Petrie, R. J., Koo, H., & Yamada, K. M. (2014). Generation of compartmentalized pressure by a nuclear piston governs cell motility in a 3D matrix. Science (New York, N.Y.), 345(6200), 1062–1065. https://doi.org/10.1126/science.1256965

Petrie, R. J., & Koo, H. (2014). Direct measurement of intracellular pressure. Current Protocols in Cell Biology / Editorial Board, Juan S. Bonifacino ... [et Al.], 63, 12.9.1-9. https://doi.org/10.1002/0471143030.cb1209s63

Lavery, W. J., & Kiel, J. W. (2013). Effects of head down tilt on episcleral venous pressure in a rabbit model. Experimental Eye Research, 111, 88–94. https://doi.org/10.1016/j.exer.2013.03.020

Fu, Y., Lu, Y., Liu, E. Y., Zhu, X., Mahajan, G. J., Lu, D., … Liu, R. (2013). Testosterone enhances tubuloglomerular feedback by increasing superoxide production in the macula densa. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 304(9), R726–R733. https://doi.org/10.1152/ajpregu.00341.2012

Strohmaier, C. A., Reitsamer, H. A., & Kiel, J. W. (2013). Episcleral Venous Pressure and IOP Responses to Central Electrical Stimulation in the Rat. Investigative Opthalmology & Visual Science, 54(10), 6860. https://doi.org/10.1167/iovs.13-12781

Lorenz, J. N. (2012). Micropuncture of the Kidney: A Primer on Techniques. In Comprehensive Physiology (Vol. 2, pp. 621–637). Hoboken, NJ, USA: John Wiley & Sons, Inc. https://doi.org/10.1002/cphy.c110035

Lavery, W. J., Muir, E. R., Kiel, J. W., & Duong, T. Q. (2012). Magnetic Resonance Imaging Indicates Decreased Choroidal and Retinal Blood Flow in the DBA/2J Mouse Model of Glaucoma. Investigative Opthalmology & Visual Science, 53(2), 560. https://doi.org/10.1167/iovs.11-8429

Park, J. J.-H., Boeven, J. J., Vogel, S., Leonhardt, S., Wit, H. P., & Westhofen, M. (2012). Hydrostatic fluid pressure in the vestibular organ of the guinea pig. European Archives of Oto-Rhino-Laryngology, 269(7), 1755–1758. https://doi.org/10.1007/s00405-011-1813-6

PACELLA, J. J., KAMENEVA, M. V., BRANDS, J., LIPOWSKY, H. H., VINK, H., LAVERY, L. L., & VILLANUEVA, F. S. (2012). Modulation of Pre-Capillary Arteriolar Pressure with Drag-Reducing Polymers: A Novel Method for Enhancing Microvascular Perfusion. Microcirculation, 19(7), 580–585. https://doi.org/10.1111/j.1549-8719.2012.00190.x

Pacella, J. J., Kameneva, M. V, Brands, J., Lipowsky, H. H., Vink, H., Lavery, L. L., & Villanueva, F. S. (2012). Modulation of pre-capillary arteriolar pressure with drag-reducing polymers: a novel method for enhancing microvascular perfusion. Microcirculation (New York, N.Y. : 1994), 19(7), 580–585. https://doi.org/10.1111/j.1549-8719.2012.00190.x

Park, J. J.-H., Boeven, J. J., Vogel, S., Leonhardt, S., Wit, H. P., & Westhofen, M. (2012). Hydrostatic fluid pressure in the vestibular organ of the guinea pig. European Archives of Oto-Rhino-Laryngology, 269(7), 1755–1758. https://doi.org/10.1007/s00405-011-1813-6

Bipat, R., Steels, P., Cuypers, Y., & Toelsie, J. R. (2011). Mannitol Reduces the Hydrostatic Pressure in the Proximal Tubule of the Isolated Blood-Perfused Rabbit Kidney during Hypoxic Stress and Improves Its Function. Nephron Extra, 1(1), 201–211. https://doi.org/10.1159/000333478

Watson, W. H., Song, Z., Kirpich, I. A., Deaciuc, I. V, Chen, T., & McClain, C. J. (2011). Ethanol exposure modulates hepatic S-adenosylmethionine and S-adenosylhomocysteine levels in the isolated perfused rat liver through changes in the redox state of the NADH/NAD(+) system. Biochimica et Biophysica Acta, 1812(5), 613–618. https://doi.org/10.1016/j.bbadis.2011.01.016

Carlström, M., Wilcox, C. S., & Welch, W. J. (2011). Adenosine A 2A receptor activation attenuates tubuloglomerular feedback responses by stimulation of endothelial nitric oxide synthase. American Journal of Physiology-Renal Physiology, 300(2), F457–F464. https://doi.org/10.1152/ajprenal.00567.2010

Kingma, C. M., & Wit, H. P. (2010). The effect of changes in perilymphatic K+ on the vestibular evoked potential in the guinea pig. European Archives of Oto-Rhino-Laryngology : Official Journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS) : Affiliated with the German Society for Oto-Rhino-Laryngology - Head and Neck Surgery, 267(11), 1679–1684. https://doi.org/10.1007/s00405-010-1298-8

Takano, H., Shibamoto, T., Zhang, W., Kurata, Y., & Toga, H. (2009). Hepatic microvascular pressure during anaphylactic shock in anesthetized rats☆. Microvascular Research, 78(2), 169–173. https://doi.org/10.1016/j.mvr.2009.06.007

Inamoto, R., Miyashita, T., Akiyama, K., Mori, T., & Mori, N. (2009). Endolymphatic sac is involved in the regulation of hydrostatic pressure of cochlear endolymph. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 297(5), R1610–R1614. https://doi.org/10.1152/ajpregu.00073.2009

Araujo, M., & Welch, W. J. (2009). Cyclooxygenase 2 inhibition suppresses tubuloglomerular feedback: roles of thromboxane receptors and nitric oxide. American Journal of Physiology-Renal Physiology, 296(4), F790–F794. https://doi.org/10.1152/ajprenal.90446.2008

Kingma, C. M., & Wit, H. P. (2009). Acute endolymphatic hydrops has no direct effect on the vestibular evoked potential in the guinea pig. Journal of Vestibular Research : Equilibrium & Orientation, 19(1–2), 27–32. https://doi.org/10.3233/VES-2009-0341

Hepatic microvascular pressure during anaphylactic shock in anesthetized rats. (2009). Microvascular Research, 78(2), 169–173. https://doi.org/10.1016/J.MVR.2009.06.007

Veen, R. van der (Rixt). (2008). Gene-environment interactions in early life and adulthood : implications for cocaine intake. s.n.]. Retrieved from https://www.rug.nl/research/portal/publications/acute-endolymphatic-hydrops(089c384f-8aad-4475-bef9-c5d2a3daf949).html

Valk, W. L., Wit, H. P., & Albers, F. W. J. (2008). Changes in CMDP and DPOAE during acute increased inner ear pressure in the guinea pig. European Archives of Oto-Rhino-Laryngology, 265(3), 287–292. https://doi.org/10.1007/s00405-007-0442-6

Sharma, S. K., Lucitti, J. L., Nordman, C., Tinney, J. P., Tobita, K., & Keller, B. B. (2006). Impact of Hypoxia on Early Chick Embryo Growth and Cardiovascular Function. Pediatric Research, 59(1), 116–120. https://doi.org/10.1203/01.pdr.0000191579.63339.90

Valk, W. L., Wit, H. P., & Albers, F. W. J. (2006). Changes in distortion of two-tone cochlear microphonic and otoacoustic emission signals during an acute endolymphatic hydrops in the guinea pig. European Archives of Oto-Rhino-Laryngology, 263(5), 430–434. https://doi.org/10.1007/s00405-005-1035-x

Valk, W. L., Wit, H. P., & Albers, F. W. J. (2006). Rupture of Reissner’s membrane during acute endolymphatic hydrops in the guinea pig: a model for Ménière’s disease? Acta Oto-Laryngologica, 126(10), 1030–1035. https://doi.org/10.1080/00016480600621722

Stekelenburg-de Vos, S., Steendijk, P., Ursem, N. T. C., Wladimiroff, J. W., Delfos, R., & Poelmann, R. E. (2005). Systolic and Diastolic Ventricular Function Assessed by Pressure-Volume Loops in the Stage 21 Venous Clipped Chick Embryo. Pediatric Research, 57(1), 16–21. https://doi.org/10.1203/01.PDR.0000147734.53277.75

Shweta, A., Denton, K. M., Kett, M. M., Bertram, J. F., Lambert, G. W., & Anderson, W. P. (2005). Paradoxical structural effects in the unilaterally denervated spontaneously hypertensive rat kidney. Journal of Hypertension, 23(4), 851–859. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/15775791

Valk, W. L., Wit, H. P., Segenhout, J. M., Dijk, F., van der Want, J. J. L., & Albers, F. W. J. (2005). Morphology of the endolymphatic sac in the guinea pig after an acute endolymphatic hydrops. Hearing Research, 202(1–2), 180–187. https://doi.org/10.1016/j.heares.2004.10.010

Chen, B., Yuan, Y.-S., Wang, D.-H., Chi, F.-L., & Wang, Z.-M. (2005). A Correlation Study of Endoneurial Fluid Pressure and Electroneurography of the Facial Nerve. ORL, 67(2), 113–118. https://doi.org/10.1159/000085028

Kopp, R., Schwerte, T., & Pelster, B. (2005). Cardiac performance in the zebrafish breakdance mutant. Journal of Experimental Biology, 208(11), 2123–2134. https://doi.org/10.1242/jeb.01620

Kopp, R., Schwerte, T., & Pelster, B. (2005). Cardiac performance in the zebrafish breakdance mutant. The Journal of Experimental Biology, 208(Pt 11), 2123–2134. https://doi.org/10.1242/jeb.01620

Lucitti, J. L., Tobita, K., & Keller, B. B. (2005). Arterial hemodynamics and mechanical properties after circulatory intervention in the chick embryo. The Journal of Experimental Biology, 208, 1877–1885. https://doi.org/10.1242/jeb.01574

Reitsamer, H. A., Kiel, J. W., Harrison, J. M., Ransom, N. L., & McKinnon, S. J. (2004). Tonopen measurement of intraocular pressure in mice. Experimental Eye Research, 78(4), 799–804. https://doi.org/10.1016/j.exer.2003.11.018

Denton, K. M., Shweta, A., Flower, R. L., & Anderson, W. P. (2004). Predominant postglomerular vascular resistance response to reflex renal sympathetic nerve activation during ANG II clamp in rabbits. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 287(4), R780–R786. https://doi.org/10.1152/ajpregu.00202.2004

Link, B. A., Gray, M. P., Smith, R. S., & John, S. W. M. (2004). Intraocular Pressure in Zebrafish: Comparison of Inbred Strains and Identification of a Reduced Melanin Mutant with Raised IOP. Investigative Opthalmology & Visual Science, 45(12), 4415. https://doi.org/10.1167/iovs.04-0557

Valk, W. L., Wit, H. P., & Albers, F. W. J. (2004). Evaluation of cochlear function in an acute endolymphatic hydrops model in the guinea pig by measuring low-level DPOAEs. Hearing Research, 192(1–2), 47–56. https://doi.org/10.1016/j.heares.2003.12.021

Valk, W. L., Wit, H. P., & Albers, F. W. J. (2004). Effect of acute inner ear pressure changes on low-level distortion product otoacoustic emissions in the guinea pig. Acta Oto-Laryngologica, 124(8), 929–936. https://doi.org/10.1080/00016480410017396

Kim, M., Harris, N. R., Korzick, D. H., & Tarbell, J. M. (2004). Control of the arteriolar myogenic response by transvascular fluid filtration. Microvascular Research, 68(1), 30–37. https://doi.org/10.1016/j.mvr.2004.03.002

Feijen, R. A., Segenhout, J. M., Albers, F. W. J., & Wit, H. P. (2004). Cochlear aqueduct flow resistance depends on round window membrane position in guinea pigs. Journal of the Association for Research in Otolaryngology : JARO, 5(4), 404–410. https://doi.org/10.1007/S10162-004-5001-X

Schwerte, T., & Fritsche, R. (2003). Understanding cardiovascular physiology in zebrafish and Xenopus larvae: the use of microtechniques. Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology, 135(1), 131–145. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12727550

Warmerdam, T. J., Schröder, F. H. H. J., Wit, H. P., & Albers, F. W. J. (2003). Perilymphatic and endolymphatic pressures during endolymphatic hydrops. European Archives of Oto-Rhino-Laryngology : Official Journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS) : Affiliated with the German Society for Oto-Rhino-Laryngology - Head and Neck Surgery, 260(1), 9–11. https://doi.org/10.1007/s00405-002-0518-2

de Graaff, J. C., Ubbink, D. T., Lagarde, S. M., & Jacobs, M. J. H. M. (2003). Postural changes in capillary pressure in the hallux of healthy volunteers. Journal of Applied Physiology, 95(6), 2223–2228. https://doi.org/10.1152/japplphysiol.00210.2003

Understanding cardiovascular physiology in zebrafish and Xenopus larvae: the use of microtechniques. (2003). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 135(1), 131–145. https://doi.org/10.1016/S1095-6433(03)00044-8

Denton, K. M., Shweta, A., & Anderson, W. P. (2002). Preglomerular and postglomerular resistance responses to different levels of sympathetic activation by hypoxia. Journal of the American Society of Nephrology : JASN, 13(1), 27–34. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11752018

Avila, M. Y., Seidler, R. W., Stone, R. A., & Civan, M. M. (2002). Inhibitors of NHE-1 Na+/H+ exchange reduce mouse intraocular pressure. Investigative Ophthalmology & Visual Science, 43(6), 1897–1902. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12036996

Feijen, R. A., Segenhout, J. M., Albers, F. W. J., & Wit, H. P. (2002). Change of guinea pig inner ear pressure by square wave middle ear cavity pressure variation. Acta Oto-Laryngologica, 122(2), 138–145. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11936904

Association for Research in Vision and Ophthalmology., H. A., & Kiel, J. W. (2002). Investigative ophthalmology &amp; visual science. Investigative Ophthalmology & Visual Science (Vol. 43). [Association for Research in Vision and Ophthalmology, etc.]. Retrieved from https://iovs.arvojournals.org/article.aspx?articleid=2162493

Ishii, T., Kuwaki, T., Masuda, Y., & Fukuda, Y. (2001). Postnatal development of blood pressure and baroreflex in mice. Autonomic Neuroscience, 94(1–2), 34–41. https://doi.org/10.1016/S1566-0702(01)00339-3

Avila, M. Y., Carré, D. A., Stone, R. A., & Civan, M. M. (2001). Reliable measurement of mouse intraocular pressure by a servo-null micropipette system. Investigative Ophthalmology & Visual Science, 42(8), 1841–1846. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11431452

Warmerdam, T. J., Schröder, F. H., Wit, H. P., & Albers, F. W. (2001). Perilymphatic and endolymphatic pressure in the guinea pig after distal dissection of the endolymphatic sac. Otology & Neurotology : Official Publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology, 22(3), 373–376. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11347642

Hu, N., Yost, H. J., & Clark, E. B. (2001). Cardiac morphology and blood pressure in the adult zebrafish. The Anatomical Record, 264(1), 1–12. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11505366

Hu, N., Yost, H. J., & Clark, E. B. (2001). Cardiac morphology and blood pressure in the adult zebrafish. The Anatomical Record, 264(1), 1–12. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11505366

Ishii, T., Kuwaki, T., Masuda, Y., & Fukuda, Y. (2001). Postnatal development of blood pressure and baroreflex in mice. Autonomic Neuroscience : Basic & Clinical, 94(1–2), 34–41. https://doi.org/10.1016/S1566-0702(01)00339-3

Hu, N., Sedmera, D., Yost, H. J., & Clark, E. B. (2000). Structure and function of the developing zebrafish heart. The Anatomical Record, 260(2), 148–157. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10993952

Barnidge, J., & Harris, N. R. (2000). Requirement of arteriovenular pairing for increased capillary filtration during acute inflammation. Microcirculation (New York, N.Y. : 1994), 7(4), 259–268. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10963631

Feijen, R. A., Segenhout, J. M., Wit, H. P., & Albers, F. W. J. (2000). Monitoring Inner Ear Pressure Changes in Normal Guinea Pigs Induced by the Meniett ® 20. Acta Oto-Laryngologica, 120(7), 804–809. https://doi.org/10.1080/000164800750061633

Wit, H. P., Warmerdam, T. J., & Albers, F. W. . (2000). Measurement of the mechanical compliance of the endolymphatic compartments in the guinea pig. Hearing Research, 145(1–2), 82–90. https://doi.org/10.1016/S0378-5955(00)00078-2

Hu, N., Sedmera, D., Yost, H. J., & Clark, E. B. (2000). Structure and function of the developing zebrafish heart. The Anatomical Record, 260(2), 148–157. https://doi.org/10.1002/1097-0185(20001001)260:2<148::AID-AR50>3.0.CO;2-X

Hu, N., Sedmera, D., Yost, H. J., & Clark, E. B. (2000). Structure and function of the developing zebrafish heart. The Anatomical Record, 260(2), 148–157. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10993952

Wit, H. P., Thalen, E. O., & Albers, F. W. (1999). Dynamics of inner ear pressure release, measured with a double-barreled micropipette in the guinea pig. Hearing Research, 132(1–2), 131–139. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10392555

Kelly, S. M., & Macklem, P. T. (1991). Direct measurement of intracellular pressure. The American Journal of Physiology, 260(June), C652–C657. https://doi.org/10.1002/0471143030.cb1209s63

Proximodistal gradient in endoneurial fluid pressure. (1988). Experimental Neurology, 102(3), 368–370. https://doi.org/10.1016/0014-4886(88)90233-6

Tanner, C., Frambach, D. A., & Misfeldt, D. S. (1983). Transepithelial transport in cell culture. A theoretical and experimental analysis of the biophysical properties of domes. Biophysical Journal, 43(2), 183–190. https://doi.org/10.1016/S0006-3495(83)84339-2

Rabito, C. A., Tchao, R., Valentich, J., & Leighton, J. (1980). Effect of cell-substratum interaction on hemicyst formation by MDCK cells. In Vitro, 16(6), 461–468. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/6248454

More Choices:
  1. Rack Mount Kit, 5 1/4-in. high
    Rack Mount Kit, 5 1/4-in. high
    2933
    $127.00
  2. Replacement Probe for SYS-900A
    Replacement Probe for SYS-900A
    900AP
    $581.00
  3. Replacement Pressure Pod
    Replacement Pressure Pod
    900APP
    $2,053.00
  4. Replacement Liquid Trap
    Replacement Liquid Trap
    5332
    $217.00
  5. Pressure Manometer
    Pressure Manometer
    Multiple SKUs
    $695.00
  6. Extension cable, 5 feet
    Extension cable, 5 feet
    3491
    $136.00
  7. Pressure Pod 900A
    Pressure Pod 900A
    900APP100
    $2,053.00
  8. Prepulled Micropipette for 900A
    Prepulled Micropipette for 900A
    TIPTW900A
    $154.00
  9. Pressure Calibration Chamber
    Pressure Calibration Chamber
    CAL900A
    $570.00
  10. Microelectrode Holder (MEH6RFW)
    Microelectrode Holder (MEH6RFW)
    Multiple SKUs
    $71.00
  11. Microelectrode Holder (MEH6SFW)
    Microelectrode Holder (MEH6SFW)
    Multiple SKUs
    $71.00
Copyright © World Precision Instruments. All rights reserved.