Pneumatic PicoPump

Item#: SYS-PV820
  • Regulated Hold and Ejection Pressure
  • Carefully regulated air pressures for securing cells and injecting them with fluid
  • Pressure Input: 0-150 psi
  • Pressure Output: 0.3-90 psi

Price: 2349.00

Qty:

THIS SITE REQUIRES JAVASCRIPT AND THIRD PARTY COOKIES TO PLACE AN ORDER.
For pricing, Customers outside of the US and Canada, please Contact your distributor

See the current Spec Sheet.

Microinjection Spec Sheet

PicoPump Design for Intracellular Injection

Designed to simplify intracellular injection and a variety of other microinjection tasks, PicoPumps use carefully regulated air pressures for securing cells and injecting them with fluid. Injected volumes range from picoliters to nanoliters. Separate ports supply positive and negative pressure—positive pressure for high-pressure ejection, and suction for supporting the cell or for filling the pipette from the tip. A second pressure port maintains a low positive “holding” pressure to the injecting pipette between injection pulses, to prevent fluid up take through capillary action.

Timing, ejection pressure, holding pressure, and suction are adjusted independently by control knobs and indicator gauges on the front panel. Injection pressure is controlled by a 20-turn regulator on the front panel. A built-in timing circuit allows precise control of the amount of time that the injection pressure is applied to the output port. Time intervals can range from 10 seconds down to 10ms or less, depending on the eject pressure setting.

The injection pressure interval can be triggered manually:

  • manually on the front panel
  • by footswitch
  • by computer controlled TTL pulse.

A 5V monitor output provides a logic-level pulse for your computer or other monitoring device.

Using the PicoPump Instead of Iontophoresis 

The PicoPumps are designed to inject very small quantities of fluids, such as drugs, into cells or small organelles. Pressure injection is an especially useful alternative to electroiontophoresis, since it does not mandate the use of charged ions. Two different positive pressures may be applied–one for ejection at high pressure and a second, lower pressure to prevent back filling of the pipette by capillary action. Vacuum may also be applied on a separate channel to hold cells or small objects and to load pipettes from the tip. Therefore, cells may be held by vacuum and simultaneously injected using pressure.

PV820 PicoPump Features

Like the PV830, the PV820 offers separate regulated hold and ejection pressures with a precision timing circuit that switches from eject pressure to hold pressure automatically. Although regulated vacuum is not provided in this model, suction can be provided by connecting a pre-regulated vacuum source to the vacuum port on the rear panel. Suction is then available through the pressure ports.

PV820 Instruction Manual
Syringe Volume Calculation Spreadsheet- Use this .XLS spreadsheet to calculate the volume of your syringe when you are using an UMP3, DMP, MMP or PV820/PV830.

PRESSURE
Pressure Input 0-150PSI
Pressure Output 0.3-90PSI
Lowest Regulated Pressure 12" water
Regulator Accuracy 0.1% (20-turn dial)
Regulator Repeatability 0.05PSI (both hold and eject pressures)
Gauge Accuracy 3% at full scale (both hold and eject pressures)
Input Connector Quick Connect (1/4" OD tubing)
Output Connector Barbed (1/16" ID tubing)
Control Solenid
Pulse Width 10ms-10s in Timed Mode (10-turn dial)
VACUUM
Vacuum Input 0-30.0" Hg
Vacuum Output Unregulated
Lowest Regulated Vacuum Unregulated
Regulator Accuracy Unregulated
Regulator Repeatability Unregulated
Guage Accuracy None
Input Connector Quick Connect (1/4" OD tubing)
Output Connector Barbed (1/16" ID tubing)
Control Manual
Vent Atmosphere
CONNECTIONS INCLUDED
Input Kit 10' nylon tubing (0.25" OD, 1000PSI), one 1/4" female NPT adapter
Output Kit Two PicoNozzle
PHYSICAL SPECS
Power 95-135V or 220-240V, 50/60Hz
Dimensions 17 x 3.5 x 9.5" (43 x 9 x 24cm)
Shipping Weight 11 lb. (5kg)

Carrington, B., Varshney, G. K., Burgess, S. M., & Sood, R. (2015). CRISPR-STAT: an easy and reliable PCR-based method to evaluate target-specific sgRNA activity. Nucleic Acids Research, 43(22), e157. http://doi.org/10.1093/nar/gkv802 

Chokshi, P. (2015). Analysis of scn5Laa and scn5Lab Gene Function in Danio rerio (Zebrafish) Heart Development through TALENs/CRISPR-CAS9-mediated Gene Knockout. Retrieved March 14, 2016, from http://thescholarship.ecu.edu/bitstream/handle/10342/4923/Chokshi_ecu_0600O_11444.pdf?sequence=1 

Ramezani, T., Laux, D. W., Bravo, I. R., Tada, M., & Feng, Y. (2015). Live Imaging of Innate Immune and Preneoplastic Cell Interactions Using an Inducible Gal4/UAS Expression System in Larval Zebrafish Skin. Journal of Visualized Experiments, (96), e52107–e52107. http://doi.org/10.3791/52107 

Ewart, M.-A., Kennedy, S., MacMillan, D., Raja, A. L., Watt, I. M., & Currie, S. (2014). Altered vascular smooth muscle function in the ApoE knockout mouse during the progression of atherosclerosis. http://doi.org/10.1016/j.atherosclerosis.2014.02.014 

Henson, H. E., Parupalli, C., Ju, B., & Taylor, M. R. (2014). Functional and genetic analysis of choroid plexus development in zebrafish. Frontiers in Neuroscience, 8, 364. http://doi.org/10.3389/fnins.2014.00364 

Huang, L., Xiao, A., Wecker, A., McBride, D. A., Choi, S. Y., Zhou, W., & Lipschutz, J. H. (2014). A Possible Zebrafish Model of Polycystic Kidney Disease: Knockdown of <em>wnt5a</em> Causes Cysts in Zebrafish Kidneys. Journal of Visualized Experiments, (94), e52156–e52156. http://doi.org/10.3791/52156 

Konantz, J., & Antos, C. L. (2014). Reverse Genetic Morpholino Approach Using Cardiac Ventricular Injection to Transfect Multiple Difficult-to-target Tissues in the Zebrafish Larva. Journal of Visualized Experiments, (88), e51595–e51595. http://doi.org/10.3791/51595 

Mukunda, L., Lavista-Llanos, S., Hansson, B. S., & Wicher, D. (2014). Dimerisation of the Drosophila odorant coreceptor Orco. Frontiers in Cellular Neuroscience, 8, 261. http://doi.org/10.3389/fncel.2014.00261 

Perathoner, S., Daane, J. M., Henrion, U., Seebohm, G., Higdon, C. W., Johnson, S. L., … Harris, M. P. (2014). Bioelectric signaling regulates size in zebrafish fins. PLoS Genetics, 10(1), e1004080. http://doi.org/10.1371/journal.pgen.1004080 

Tang, P.-C., Watson, G. M., Tilney, L., Cotanche, T., Tilney, M., Hudspeth, A., … Hudson, R. (2014). Cadherin-23 May Be Dynamic in Hair Bundles of the Model Sea Anemone Nematostella vectensis. PLoS ONE, 9(1), e86084. http://doi.org/10.1371/journal.pone.0086084 

Vajn, K., Suler, D., Plunkett, J. A., & Oudega, M. (2014). Temporal profile of endogenous anatomical repair and functional recovery following spinal cord injury in adult zebrafish. PloS One, 9(8), e105857. http://doi.org/10.1371/journal.pone.0105857 

Wagley, S., Hemsley, C., Thomas, R., Moule, M. G., Vanaporn, M., Andreae, C., … Titball, R. W. (2014). The twin arginine translocation system is essential for aerobic growth and full virulence of Burkholderia thailandensis. Journal of Bacteriology, 196(2), 407–16. http://doi.org/10.1128/JB.01046-13 

Wang, X., Piñol, R. A., Byrne, P., & Mendelowitz, D. (2014). Optogenetic Stimulation of Locus Ceruleus Neurons Augments Inhibitory Transmission to Parasympathetic Cardiac Vagal Neurons via Activation of Brainstem α1 and β1 Receptors. Journal of Neuroscience, 34(18).

Haddad-Tóvolli, R., Szabó, N.-E., Zhou, X., & Alvarez-Bolado, G. (2013). Genetic Manipulation of the Mouse Developing Hypothalamus through <em>In utero</em> Electroporation. Journal of Visualized Experiments, (77), e50412–e50412. http://doi.org/10.3791/50412 

Jo, D. H., Son, D., Na, Y., Jang, M., Choi, J.-H., Kim, J. H., … Kim, J. H. (2013). Orthotopic transplantation of retinoblastoma cells into vitreous cavity of zebrafish for screening of anticancer drugs. Molecular Cancer, 12, 71. http://doi.org/10.1186/1476-4598-12-71 

Kizil, C., Iltzsche, A., Kaslin, J., & Brand, M. (2013). Micromanipulation of Gene Expression in the Adult Zebrafish Brain Using Cerebroventricular Microinjection of Morpholino Oligonucleotides. Journal of Visualized Experiments, (75), e50415–e50415. http://doi.org/10.3791/50415 

Levi, L., Lobo, G., Doud, M. K., von Lintig, J., Seachrist, D., Tochtrop, G. P., & Noy, N. (2013). Genetic Ablation of the Fatty Acid–Binding Protein FABP5 Suppresses HER2-Induced Mammary Tumorigenesis. Cancer Research, 73(15).

Messanvi, F., Eggens-Meijer, E., Roozendaal, B., & van der Want, J. J. (2013). A discrete dopaminergic projection from the incertohypothalamic A13 cell group to the dorsolateral periaqueductal gray in rat. Frontiers in Neuroanatomy, 7, 41. http://doi.org/10.3389/fnana.2013.00041 

Saha, D., Leong, K., Katta, N., & Raman, B. (2013). Multi-unit Recording Methods to Characterize Neural Activity in the Locust (<em>Schistocerca Americana</em>) Olfactory Circuits. Journal of Visualized Experiments, (71), e50139–e50139. http://doi.org/10.3791/50139 

Satoh, H., Qu, L., Suzuki, H., & Saitow, F. (2013). Depolarization-induced depression of inhibitory transmission in cerebellar Purkinje cells. Physiological Reports, 1(3), n/a-n/a. http://doi.org/10.1002/phy2.61 

Artegiani, B., Lange, C., & Calegari, F. (2012). Expansion of Embryonic and Adult Neural Stem Cells by <em>In Utero</em> Electroporation or Viral Stereotaxic Injection. Journal of Visualized Experiments, (68), e4093–e4093. http://doi.org/10.3791/4093 

Brown, C. Y., Eom, D. S., Amarnath, S., & Agarwala, S. (2012). A simple technique for early in vivo electroporation of E1 chick embryos. Developmental Dynamics, 241(3), 545–552. http://doi.org/10.1002/dvdy.23747 

Chen, D., Jancovski, N., Bassi, J. K., Nguyen-Huu, T.-P., Choong, Y.-T., Palma-Rigo, K., … Allen, A. M. (2012). Angiotensin type 1A receptors in C1 neurons of the rostral ventrolateral medulla modulate the pressor response to aversive stress. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 32(6), 2051–61. http://doi.org/10.1523/JNEUROSCI.5360-11.2012 

Grama, A., & Engert, F. (2012). Direction selectivity in the larval zebrafish tectum is mediated by asymmetric inhibition. Frontiers in Neural Circuits, 6, 59. http://doi.org/10.3389/fncir.2012.00059 

Huber-Reggi, S. P., Chen, C.-C., Grimm, L., Straumann, D., Neuhauss, S. C. F., & Huang, M. Y.-Y. (2012). Severity of infantile nystagmus syndrome-like ocular motor phenotype is linked to the extent of the underlying optic nerve projection defect in zebrafish belladonna mutant. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 32(50), 18079–86. http://doi.org/10.1523/JNEUROSCI.4378-12.2012 

Hyde, D. R., Godwin, A. R., & Thummel, R. (2012). <em>In vivo</em> Electroporation of Morpholinos into the Regenerating Adult Zebrafish Tail Fin. Journal of Visualized Experiments, (61), e3632–e3632. http://doi.org/10.3791/3632 

Nakaya, N., Sultana, A., Lee, H.-S., & Tomarev, S. I. (2012). Olfactomedin 1 interacts with the Nogo A receptor complex to regulate axon growth. The Journal of Biological Chemistry, 287(44), 37171–84. http://doi.org/10.1074/jbc.M112.389916 

Seo, J., Yun, C.-O., Kwon, O.-J., Choi, E.-J., Song, J.-Y., Choi, I., & Cho, K.-H. (2012). A proteoliposome containing apolipoprotein A-I mutant (V156K) enhances rapid tumor regression activity of human origin oncolytic adenovirus in tumor-bearing zebrafish and mice. Molecules and Cells, 34(2), 143–8. http://doi.org/10.1007/s10059-012-2291-4 

Cho, K.-H. (2011). Enhanced delivery of rapamycin by V156K-apoA-I high-density lipoprotein inhibits cellular proatherogenic effects and senescence and promotes tissue regeneration. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 66(12), 1274–85. http://doi.org/10.1093/gerona/glr169 

Farah, C. A., & Sossin, W. S. (2011). Live-imaging of PKC Translocation in Sf9 Cells and in Aplysia Sensory Neurons. Journal of Visualized Experiments, (50), e2516–e2516. http://doi.org/10.3791/2516 

Holmes, K. E., Wyatt, M. J., Shen, Y., Thompson, D. A., & Barald, K. F. (2011). Direct Delivery of MIF Morpholinos Into the Zebrafish Otocyst by Injection and Electroporation Affects Inner Ear Development. Journal of Visualized Experiments, (47), e2466–e2466. http://doi.org/10.3791/2466 

Kizil, C., & Brand, M. (2011). Cerebroventricular microinjection (CVMI) into adult zebrafish brain is an efficient misexpression method for forebrain ventricular cells. PloS One, 6(11), e27395. http://doi.org/10.1371/journal.pone.0027395 

Sundvik, M., Kudo, H., Toivonen, P., Rozov, S., Chen, Y.-C., & Panula, P. (2011). The histaminergic system regulates wakefulness and orexin/hypocretin neuron development via histamine receptor H1 in zebrafish. The FASEB Journal, 25(12), 4338–4347. http://doi.org/10.1096/fj.11-188268 

Dean, D. A., & Gasiorowski, J. Z. (2011). Nonviral gene delivery. Cold Spring Harbor Protocols, 2011(3), top101. http://doi.org/10.1101/PDB.TOP101

Cianciolo Cosentino, C., Roman, B. L., Drummond, I. A., & Hukriede, N. A. (2010). Intravenous microinjections of zebrafish larvae to study acute kidney injury. Journal of Visualized Experiments : JoVE, (42). http://doi.org/10.3791/2079 

Deiters, A., Garner, R. A., Lusic, H., Govan, J. M., Dush, M., Nascone-Yoder, N. M., & Yoder, J. A. (2010). Photocaged morpholino oligomers for the light-regulation of gene function in zebrafish and Xenopus embryos. Journal of the American Chemical Society, 132(44), 15644–50. http://doi.org/10.1021/ja1053863 

Kague, E., Weber, C., & Fisher, S. (2010). Mosaic Zebrafish Transgenesis for Evaluating Enhancer Sequences. Journal of Visualized Experiments, (41), e1722–e1722. http://doi.org/10.3791/1722 

Lee, G.-H., Ahn, T., Kim, D.-S., Park, S. J., Lee, Y. C., Yoo, W. H., … Chae, H.-J. (2010). Bax inhibitor 1 increases cell adhesion through actin polymerization: involvement of calcium and actin binding. Molecular and Cellular Biology, 30(7), 1800–13. http://doi.org/10.1128/MCB.01357-09 

Russek-Blum, N., Nabel-Rosen, H., & Levkowitz, G. (2010). Two-photon-based photoactivation in live zebrafish embryos. Journal of Visualized Experiments : JoVE, (46). http://doi.org/10.3791/1902 

Bill, B. R., Petzold, A. M., Clark, K. J., Schimmenti, L. A., & Ekker, S. C. (2009). A Primer for Morpholino Use in Zebrafish. Zebrafish, 6(1), 69–77. http://doi.org/10.1089/zeb.2008.0555 

Yuan, S., & Sun, Z. (2009). Microinjection of mRNA and Morpholino Antisense Oligonucleotides in Zebrafish Embryos. Journal of Visualized Experiments, (27), e1113–e1113. http://doi.org/10.3791/1113 

Faustino, R. S., Cheung, P., Richard, M. N., Dibrov, E., Kneesch, A. L., Deniset, J. F., … Pierce, G. N. (2008). Ceramide regulation of nuclear protein import. Journal of Lipid Research, 49(3), 654–62. http://doi.org/10.1194/jlr.M700464-JLR200 

Sim, J. A., Broomhead, H. E., & North, R. A. (2008). Ectodomain lysines and suramin block of P2X1 receptors. The Journal of Biological Chemistry, 283(44), 29841–6. http://doi.org/10.1074/jbc.M802523200 

Faustino, R. S., Stronger, L. N. W., Richard, M. N., Czubryt, M. P., Ford, D. A., Prociuk, M. A., … Pierce, G. N. (2007). RanGAP-Mediated Nuclear Protein Import in Vascular Smooth Muscle Cells Is Augmented by Lysophosphatidylcholine. Molecular Pharmacology, 71(2).

Reig, R., Sanchez-Vives, M. V., Evarts, E., Hobson, J., McCarley, R., Steriade, M., … Fetz, E. (2007). Synaptic Transmission and Plasticity in an Active Cortical Network. PLoS ONE, 2(8), e670. http://doi.org/10.1371/journal.pone.0000670 

Dean, D. A. (2006). Gene delivery by direct injection (microinjection) using a controlled-flow system. CSH Protocols, 2006(7), pdb.prot4654. http://doi.org/10.1101/pdb.prot4654

Method of identifying chemical agents which stimulate odorant receptors of sensory neurons. (2004).

Integrated biochip with continuous sampling and processing (csp) system. (2004).

Kindig, C. A., Howlett, R. A., & Hogan, M. C. (2003). Effect of extracellular Po 2 on the fall in intracellular Po 2 in contracting single myocytes. Journal of Applied Physiology, 94(5), 1964–1970. http://doi.org/10.1152/japplphysiol.00893.2002 

Dormann, D., Abe, T., Weijer, C. J., & Williams, J. (2001). Inducible nuclear translocation of a STAT protein in Dictyostelium prespore cells: implications for morphogenesis and cell-type regulation. Development (Cambridge, England), 128(7), 1081–8. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11245573 

Gutiérrez, A. A., Arias, J. M., García, L., Mas-Oliva, J., & Guerrero-Hernández, A. (1999). Activation of a Ca 2+ -permeable cation channel by two different inducers of apoptosis in a human prostatic cancer cell line. The Journal of Physiology, 517(1), 95–107. http://doi.org/10.1111/j.1469-7793.1999.0095z.x 

Nishizaki, T., & Mori, M. (1998). Diverse Signal Transduction Pathways Mediated by Endogenous P2 Receptors in Cultured Rat Cerebral Cortical Neurons. Journal of Neurophysiology, 79(5).

Bibikova, T. N., Zhigilei, A., & Gilroy, S. (1997). Root hair growth in Arabidopsis thaliana is directed by calcium and an endogenous polarity. Planta. http://doi.org/10.1007/s004250050219 

St Bird, G. J., Obie, J. F., & Putney, J. W. (1992). Functional Homogeneity of the Non-mitochondrial Ca2+ Pool in Intact Mouse Lacrimal Acinar Cells*. THE JOURNAL OF BIOLOGICAL CHEMISTRY Val, 267(26), 18382–18386.

Dancause, N., Barbay, S., Frost, S. B., Plautz, E. J., Chen, D., Zoubina, E. V, … Nudo, R. J. (n.d.). Development/Plasticity/Repair Extensive Cortical Rewiring after Brain Injury. http://doi.org/10.1523/JNEUROSCI.3256-05.2005

Kopeika, J., Zhang, T., & Rawson, D. Zebrafish embryos (Danio rerio) using microinjection. Cryo Letters, 27(5), 319–28. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1855166&tool=pmcentrez&rendertype=abstract 

Nelson, B. P., Grimsrud, T. E., Liles, M. R., Goodman, R. M., & Corn, R. M. (n.d.). Surface Plasmon Resonance Imaging Measurements of DNA and RNA Hybridization Adsorption onto DNA Microarrays. http://doi.org/10.1021/ac0010431 

Nerurkar, N. L., Achtien, K. H., Filas, B. A., Voronov, D. A., & Taber, L. A. (n.d.). Ashok Ramasubramanian On Modeling Morphogenesis of the Looping Heart Following Mechanical Perturbations. http://doi.org/10.1115/1.2978990͔ 

Ritchie, S., & Gilroy, S. (n.d.). Calcium-Dependent Protein Phosphorylation May Mediate the Gibberellic Acid Response in Barley Aleurone 1. 

Vo-Dinh, T., Alarie, J. P., Isola, N., Landis, D., Wintenberg, A. L., & Ericson, M. N. (n.d.). DNA Biochip Using a Phototransistor Integrated Circuit. http://doi.org/10.1021/ac980043m

These accessories are available for the PV830.

3260 
Foot Switch
2932 Rack Mount Kit, 3.5" high (PV820)
2933 
Rack Mount Kit, 5.25"" high (PV830)
5430-10
PicoNozzle Kit (MPH6S for 1.0mm pipette and 5' tubing assembly)
5430-12
PicoNozzle Kit (MPH6S for 1.2mm pipette and 5' tubing assembly)
5430-15
PicoNozzle Kit (MPH6S for 1.5mm pipette and 5' tubing assembly)
5430-20 PicoNozzle Kit (MPH6S for 2.0mm pipette and 5' tubing assembly)
5430-ALL
PicoNozzle Kit (for 1.0, 1.2, 1.5 and 1.65mm pepette and 5' tubing assembly) 
MPH6S Micropipette Holder (specify 1.0, 1.2, 1.5 or 2.0mm)
MPH6R
Micropipette Holder (specify 1.0, 1.2, 1.5 or 2.0mm)
3316 
Replacement Input Kit

Replacement Parts

75122-110 PicoNozzle Gasket, 1.0mm, Green, Pkg of 10
75122-210 PicoNozzle Gasket, 1.2mm, Black, Pkg of 10
75122-310 PicoNozzle Gasket, 1.5mm, Blue, Pkg of 10
75122-410 PicoNozzle Gasket, 1.65mm, Red, Pkg of 10
75125-6 Clear plastic pipette holders for the 5430-ALL, pkg of 6

Microinjection System

The PV820 is our popular pump for microinjection. A basic system shown below includes:

  • PZMIII-MI  microscope with lighted base
  • PV820 PicoPump
  • M3301 Micromanipulator
  • 5430-ALL PicoNozzle Kit
  • M10 magnetic stand
  • 5052 steel base plate

Also shown in the image is the PUL-1000 micropipette puller, surgical instruments, pre-pulled MicroTips and some capillary glass.

This system is ideal for use with Zebrafish, C. Elegans, Drosophila and Xenopus. Our customizable microinjection system is also suitable for microinjection applications, including CRISPR/Cas9.  

The system is completely customizable. To see some of the options, take a look at the Microinjection Toolbox article on the blog.

Microinjection System includes the microscope with lighted base, a pump, a micromanipulator, an injector and accessories.

If you have any questions about our Microinjection Systems, please give us a call at (866) 606-1974 (Toll free in the USA) or email us at wpi@wpiinc.com.

 

 

« Go Back