DAM50 Extracellular Amplifier

Item#: SYS-DAM50

A family of very low noise battery-operated amplifiers

  • Battery powered to eliminate line noise
  • High pass and low pass filtering
  • Single ended or differential operation
  • DC/AC amplification
  • Variable output positioning
  • Constructed of high quality components to ensure minimal intrinsic (shot) noise
  • Portable
  • Rack mountable

Unit Price: 1139.00

Qty:

For pricing, Customers outside of the US and Canada, please Contact your distributor

See the current Spec Sheet.

See what you need to know before you buy an amplifier.

Benefits

  • Very low internal noise
  • Ultra quiet DC power supply ­— no AC required
  • Intrinsic low susceptibility to ground loops
  • Small footprint
  • Cost-effective
  • Electrostatic Discharge Protection!

Applications

  • Amplifying biopotentials from metal electrodes
  • Brain slice field stimulation
  • EAG (Electroantennogram)
  • ERG (Electroretinogram)

WPI’s DAM series amplifier’s are well known as a standard of the industry for extracellular potential amplification. These battery powered bio-amplifiers are designed with a compact chassis profile that enables you locate the unit closer to the preparation and thereby minimize long lead lengths which contribute to noise. Each amplifier is equipped with selectable high and low filters, and a position control to offset galvanic potentials which may develop during recording.

DAM series amplifiers can be used as stand-alone units on any tabletop or use optional clamp-mounting hardware to locate them conveniently within the work area. Alternatively, a pair of amplifiers can be mounted into a standard equipment rack with a rack mount kit (3484). A variety of hook up accessories are available to configure your application.

Reducing Noise with Differential Amplification

Differential amplification is of great importance in bioelectric recording to reduce the ever present effect of noise interference from power line induction. A well designed differential amplifier will significantly diminish power line (mains) noise. It is most essential that the preparation be connected with an electrode to a good electrical ground as well as to the grounding wire of the DAM50 itself. This should have the effect of greatly reducing electrostatically induced potential. In addition to the preparation ground, two differential input connections must be made via appropriate electrodes applied to the recording site so as to optimally record a bioelectric potential difference.

Feature Comparison Chart

  DAM50 DAM80
Input Mode AC/DC AC
Input Configuration Differential/Single Ended Differential
Gain Range 100-10,000 (AC)
10-1,000 (DC)
100 - 10,000 (AC)
High/Low Filters Yes Yes
Offset Position Control Yes Yes
Current Generator No Yes
Remote Active Headstage No Yes
Output Connection BNC 3.5 mm mini phone
Standard Input Connection unterminated wire Mini banana
Power Supply (2) 9V alkaline batteries (2) 9V alkaline batteries
INPUT IMPEDANCE 1012 Ω, common mode and differential
INPUT LEAKAGE CURRENT 50 pA (typical)
MAX. DC DIFFERENTIAL SIGNAL ±2.5 V (DAM 50)
GAIN AC: 100x, 1000x, 10000x, DC: 10x, 100x, 1000x (DAM50)
COMMON MODE REJECTION RATIO 100dB @ 50/60 Hz
INPUT CAPACITANCE 20 pF
AC MODE NOISE 0.4 μV RMS (2uV p-p) 0.1-100 Hz
AC MODE NOISE 2.6 μV RMS (10uV p-p) 1 Hz-10 kH
DC MODE NOISE (DAM50) (DAM50) 7.5uV RMS (30uV p-p) 3-10 kHz
BANDWIDTH FILTER SETTINGS:AC Mode Low frequency, 0.1, 1, 10, 300 Hz
BANDWIDTH FILTER SETTINGS: DC Mode(DAM50) High frequency, 0.1, 1, 3, 10 kHz
OUTPUT CONNECTORS BNC
OUTPUT VOLTAGE SWING ±8 V
OUTPUT IMPEDANCE 470 Ω
BATTERY TEST Audible tone
CALIBRATOR SIGNAL 10 Hz square wave
POSITION Approximately 250 mV
EXTERNAL COMMAND Input Voltage ±10 V commands
AC or DC current waveform ±50μA max. amplitude @ 200 KΩ
BATTERIES 2 x 9 V alkaline (included)
DIMENSIONS:DAM50 8 x 4 x 1.75 in. (20.3 x 10.2 x 4.4 cm)
SHIPPING WEIGHT 3.5 lb. (1.6 kg)

The following bandwidth charts for the DAM50 show the response of the amplifier when various filters and gains are used. For larger images, click on the thumbnails below. 

Bandwidth charts for the DAM50

GAINS: This chart shows the standard 3dB frequency cutoff at  maximum filter band pass.

The standard 3dB frequency

FILTERS: Various low pass and high pass filters were applied at the AC x1000 gain setting to show the bandwidth of and actual DAM50 amplifier.

Kim, E. Y., & Virginia, W. (n.d.). Effect of Growth Hormone on Hippocampal Synaptic Function during Sleep Deprivation By.

full-text. (n.d.).

Dai, J., Brooks, D. I., & Sheinberg, D. L. (n.d.). Supplemental Information Optogenetic and Electrical Microstimulation Systematically Bias Visuospatial Choice in Primates.

Škorjanc, A., & Belušič, G. (n.d.). How We Teach: Classroom And Laboratory Research Projects Investigation of blood flow and the effect of vasoactive substances in cutaneous blood vessels of Xenopus laevis.

Liu, Y., Wang, Y., Zhu, G., Sun, J., Bi, X., & Baudry, M. (2016). A calpain-2 selective inhibitor enhances learning & memory by prolonging ERK activation. Neuropharmacology, 105, 471–477. http://doi.org/10.1016/j.neuropharm.2016.02.022

Ztaou, S., Maurice, N., Camon, J., Guiraudie-Capraz, G., Kerkerian-Le Goff, L., Beurrier, C., … Amalric, M. (2016). Involvement of Striatal Cholinergic Interneurons and M1 and M4 Muscarinic Receptors in Motor Symptoms of Parkinson’s Disease. Journal of Neuroscience, 36(35).

Kentish, S. S. J., Frisby, C. L., Kritas, S., Li, H., Hatzinikolas, G., O’Donnell, T. A., … Ahern, G. (2015). TRPV1 Channels and Gastric Vagal Afferent Signalling in Lean and High Fat Diet Induced Obese Mice. PloS One, 10(8), e0135892. http://doi.org/10.1371/journal.pone.0135892

Blauvelt, D. G., Sato, T. F., Wienisch, M., & Murthy, V. N. (2013). Distinct spatiotemporal activity in principal neurons of the mouse olfactory bulb in anesthetized and awake states. Frontiers in Neural Circuits, 7. http://doi.org/10.3389/fncir.2013.00046

Blaise, J. H. (2013). Long-term Potentiation of Perforant Pathway-dentate Gyrus Synapse in Freely Behaving Mice. Journal of Visualized Experiments, (81), e50642. http://doi.org/10.3791/50642

Wang, H., Siddharthan, V., Kesler, K. K., Hall, J. O., Motter, N. E., Julander, J. G., & Morrey, J. D. (2013). Fatal neurological respiratory insufficiency is common among viral encephalitides. The Journal of Infectious Diseases, 208(4), 573–83. http://doi.org/10.1093/infdis/jit186

Zhang, Q.-X., Lu, R.-W., Curcio, C. A., Yao, X.-C., DC., H., SE., N., … PN, D. (2012). In Vivo Confocal Intrinsic Optical Signal Identification of Localized Retinal Dysfunction. Investigative Opthalmology & Visual Science, 53(13), 8139. http://doi.org/10.1167/iovs.12-10732

Badsha, F., Kain, P., Prabhakar, S., Sundaram, S., Padinjat, R., Rodrigues, V., & Hasan, G. (2012). Mutants in Drosophila TRPC channels reduce olfactory sensitivity to carbon dioxide. PloS One, 7(11), e49848. http://doi.org/10.1371/journal.pone.0049848

Konow, N., Azizi, E., & Roberts, T. J. (2012). Muscle power attenuation by tendon during energy dissipation. Proceedings. Biological Sciences / The Royal Society, 279(1731), 1108–13. http://doi.org/10.1098/rspb.2011.1435

Chen, S., Mohajerani, M. H., Xie, Y., & Murphy, T. H. (2012). Optogenetic analysis of neuronal excitability during global ischemia reveals selective deficits in sensory processing following reperfusion in mouse cortex. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 32(39), 13510–9. http://doi.org/10.1523/JNEUROSCI.1439-12.2012

Morrey, J. D., Siddharthan, V., Wang, H., Hall, J. O., Motter, N. E., Skinner, R. D., & Skirpstunas, R. T. (2010). Neurological suppression of diaphragm electromyographs in hamsters infected with West Nile virus. Journal of Neurovirology, 16(4), 318–329. http://doi.org/10.3109/13550284.2010.501847

Brundage, C. M., & Taylor, B. E. (2010). Neuroplasticity of the central hypercapnic ventilatory response: teratogen-induced impairment and subsequent recovery during development. Developmental Neurobiology, 70(10), 726–35. http://doi.org/10.1002/dneu.20806

Kim, E., Grover, L. M., Bertolotti, D., & Green, T. L. (2010). Growth hormone rescues hippocampal synaptic function after sleep deprivation. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 298(6), R1588-96. http://doi.org/10.1152/ajpregu.00580.2009

Kavlie, R. G., Kernan, M. J., & Eberl, D. F. (2010). Hearing in Drosophila requires TilB, a conserved protein associated with ciliary motility. Genetics, 185(1), 177–88. http://doi.org/10.1534/genetics.110.114009 

Lenti, L., Domoki, F., Gáspár, T., Snipes, J. A., Bari, F., & Busija, D. W. (2009). N-Methyl- d -Aspartate Induces Cortical Hyperemia through Cortical Spreading Depression-Dependent and -Independent Mechanisms in Rats. Microcirculation, 16(7), 629–639. http://doi.org/10.1080/10739680903131510

Su, C.-K., Ho, C.-M., Kuo, H.-H., Wen, Y.-C., & Chai, C.-Y. (2009). Sympathetic-correlated c-Fos expression in the neonatal rat spinal cord in vitro. Journal of Biomedical Science, 16(1), 44. http://doi.org/10.1186/1423-0127-16-44

Brundage, C. M., & Taylor, B. E. (2009). Timing and duration of developmental nicotine exposure contribute to attenuation of the tadpole hypercapnic neuroventilatory response. Developmental Neurobiology, 69(7), 451–61. http://doi.org/10.1002/dneu.20720

Orem, N. R., Xia, L., & Dolph, P. J. (2006). An essential role for endocytosis of rhodopsin through interaction of visual arrestin with the AP-2 adaptor. Journal of Cell Science, 119(Pt 15), 3141–8. http://doi.org/10.1242/jcs.03052

Markham, M. R., & Stoddard, P. K. (2005). Adrenocorticotropic hormone enhances the masculinity of an electric communication signal by modulating the waveform and timing of action potentials within individual cells. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 25(38), 8746–54. http://doi.org/10.1523/JNEUROSCI.2809-05.2005

Cartford, M. C. (2004). Cerebellar norepinephrine modulates learning of delay classical eyeblink conditioning: Evidence for post-synaptic signaling via PKA. Learning & Memory, 11(6), 732–737. http://doi.org/10.1101/lm.83104

Jonker, D. M., Vermeij, D. A. C., Edelbroek, P. M., Voskuyl, R. A., Piotrovsky, V. K., & Danhof, M. (2003). Pharmacodynamic Analysis of the Interaction between Tiagabine and Midazolam with an Allosteric Model That Incorporates Signal Transduction. Epilepsia, 44(3), 329–338. http://doi.org/10.1046/j.1528-1157.2003.37802.x

van den Pol, A. N., Ghosh, P. K., Liu, R., Li, Y., Aghajanian, G. K., & Gao, X.-B. (2002). Hypocretin (orexin) enhances neuron activity and cell synchrony in developing mouse GFP-expressing locus coeruleus. The Journal of Physiology, 541(1), 169–185. http://doi.org/10.1113/jphysiol.2002.017426

Ransom, C. B., Ransom, B. R., & Sontheimer, H. (2000). Activity-dependent extracellular K+ accumulation in rat optic nerve: the role of glial and axonal Na+ pumps. The Journal of Physiology, 522 Pt 3, 427–42. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2269766&tool=pmcentrez&rendertype=abstract

Alloway, P. G., & Dolph, P. J. (1999). A role for the light-dependent phosphorylation of visual arrestin. Proceedings of the National Academy of Sciences, 96(11), 6072–6077. http://doi.org/10.1073/pnas.96.11.6072

Lipchik, G. L., Holroyd, K. A., France, C. R., Kvaal, S. A., Segal, D., Cordingley, G. E., … McCool, H. R. (1996). Central and peripheral mechanisms in chronic tension-type headache. Pain, 64(3), 467–75. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2128054&tool=pmcentrez&rendertype=abstract

Knuckey, N. W., Palm, D., Primiano, M., Epstein, M. H., & Johanson, C. E. (1995). N-Acetylcysteine Enhances Hippocampal Neuronal Survival After Transient Forebrain Ischemia in Rats. Stroke, 26(2), 305–311. http://doi.org/10.1161/01.STR.26.2.305

DAM80P Replacement Probe
3072 6 Replacement Modular Cables (DAM50)
3517 2 Optional Shielded modular Cables (DAM 50)
CBL102 3.5mm Phone plug to BNC Cable
2851 BNC-to-BNC Cable
2033 Black Insulated Mini-Banana Plug
2034 Red Insulated Mini-Banana Plug
2035 Uninsulated Mini-Banana Plug
2101 9V Alkaline Battery, each (2 required)
3484 Rack Mount Kit (for 2 DAM preamps)
3485 Ringstand Mounting Kit
5447 Electrode Adapter (DAM50)
5469 Metal Micro electrode Adaptor (DAM80) (mini banana plug to 0.031 in. socket)
5489 Adapter for Metal Microelectrod (DAM50)
13388 Adapter, mini-banana plug to 2mm socket
5371 Cable, Low noise (2mm pin to 2mm pin)
3578 Adapter Cable for Ag/AgCl pellets (2mm pin)
300102 Electrode Extension, 4"
3414 9V NiMH Battery
MEH7W-XX Microelectrode Holder, 1.0, 1.5 or 2.0 mm OD

DAM50 includes the 3517 (2 optional shielded modular cables)

 

Differential Applications for Metal Electrodes

The images below show two applications for metal electrodes. Click on the images to see a larger view. You may also see the schematics for the Application Examples.

This first example shows an EP1 silver/silver chloride electrode pellet soldered to the amplifier cable. This shows a differential configuration. The EP1 is suitable for use in a mouse cranial application. To do so, it needs an extension wire to connect it to the white-green GND junction on the DAM50 cable.

 

 

DIFFERENTIAL APPLICATION FOR METAL ELECTRODES

 

 

In this second example, a sealed RC1Ag/AgCl electrode pellet is wired to the amplifier cable. This also shows a differential configuration.

DIFFERENTIAL APPLICATION FOR METAL ELECTRODES

 

« Go Back