Single Channel Pulse Generator

$3,602.00
Prices valid in USA, Canada, and PR only.
Order code
SYS-A310
Prices valid in USA, Canada, and PR only.

The A310 pulse generator/stimulator combines the reproducibility and accuracy of digital electronics with the fine resolution and continuous adjustment pos­si­ble with analog circuitry. All timing pa­ram­e­ters are entered with high resolution, ten-turn po­ten­ti­om­e­ters and six-position range switches. Timing is ac­cu­rate to within 1% of the set value.

To learn more about our warranty options, click here.

Prices valid in USA, Canada, and PR only.

The accuracy of digital electronics and the convenience of analog controls

Features

  • Single channel pulse generator with train capability
  • TTL and variable voltage output

Benefits

  • Variety of pulses: continuous run, single-shot, train/burst
  • Multiple outputs available: monitor, isolator, sync and variable
  • Premium Warranty Available

Applications

  • Electrophysiology

The A310 pulse generator/stimulator combines the reproducibility and accuracy of digital electronics with the fine resolution and continuous adjustment pos­si­ble with analog circuitry. All timing pa­ram­e­ters are entered with high resolution, ten-turn po­ten­ti­om­e­ters and six-position range switches. Timing is ac­cu­rate to within 1% of the set value.

Variety of Pulses

Pulses can be created in continuous run, single-shot or train/burst modes. Duration of the train/burst is controlled using the onboard envelope generator or by using either of two external gating inputs. Used in con­junc­tion with the A360, A365, A385 or A395, constant current pulses and trains can be created easily. A foot switch allows hands-free, manual triggering.

Multiple Outputs Available

Five separate standard BNC outputs are available on the front panel. The isolator output sends full pulse width control signals to any TTL triggered stimulus isolator, such as WPI’s A360, A365 or A385 and others. The monitor output sends synchronized large scale full pulse width signals to recording or monitoring instrumentation such as a data acquisition system or oscilloscope. The sync output provides an additional synchronized 5 µs TTL pulse for triggering external instrumentation. A variable voltage output provides two separate full pulse width signals in both positive and negative polarities in two ranges for applications that require a specific output voltage other than TTL.

Three separate outputs

Three separate outputs are available on the front panel.

  • Monitor output provides 10-15 V signals (up to 50 mA) for viewing the output on an oscilloscope or for controlling other devices.
  • Pulse stimulator’s signal, simultaneously available at the Isolator output, is sufficient to drive any WPI A300 Series stimulus isolator (A365 or A385) and is also TTL and CMOS compatible.
  • Variable output can provide signals varying between ±10 V with a resolution of 1 mV. Separate variable outputs are provided for positive and negative signals.

NOTE: Not intended for human use.

More Information
SKU SYS-A310

Fuse (2019 models)120 V: 0.5 A, fast, 5 x 20 mm metric
230 V: 0.25 A, fast 5 x 20 mm metric

TIMING PARAMETERS: EVENT INTERVAL 100 µs to 1000 s*
TIMING PARAMETERS: EVENT DELAY 10 µs to 100 s *
TIMING PARAMETERS: PULSE WIDTH 10 µs to 100 s *
TIMING PARAMETERS: TRAIN DURATION (ENVELOPE) 100 µs to 1000 s*
TIMING PARAMETERS: PULSE INTERVAL 20 µs to 100 s*
OUTPUTS: SYNC 5 µs , TTL, and 5 V CMOS compatible, 20 mA max.
OUTPUTS: MONITOR 10-15 V, 50 mA max.
OUTPUTS: ISOLATOR TTL & 5V CMOS compatible, 20 mA max.
VARIABLE (Pos or Neg)
PULSED/DC LOW RANGE HIGH RANGE
Range 0 to ±1V 0 to ±10V
Resolution 1mV 10mV
NOISE: Pulsed at 100 kHz bandwidth <500 µV
NOISE: DC Wide Band <500 µV
OUTPUT IMPEDANCE <1 Ω 
INPUTS: EXTERNAL SYNC Accepts 1 µs minimum pulses TTL, CMOS compatible
INPUTS: EXTERNAL GATE Accepts 1 µs pulse to continuous TTL, CMOS compatible
Fuse (Older models) 120 V: 0.5 A, fast, 0.25x1.25” USA
230 V: 0.25 A, fast, 0.25x1.25” USA
Fuse (2019 models) 120 V: 0.5 A, fast, 5 x 20 mm metric
230 V: 0.25 A, fast 5 x 20 mm metric
POWER 95-130 V or 190-260 V, switch selectable single phase, 50/60 Hz
DIMENSIONS 17 x 5.25 x 10 in. (43 x 13 x 25 cm)
SHIPPING WEIGHT 14 lb. (6.4 kg)
NOTES *Continuously variable in six ranges. All accuracies better than 1% of set value. 50kHz maximum pulse frequency.

*Continuously variable in six ranges. All accuracies better than 1% of set value. 50 kHz maximum pulse frequency.

Mietlicki-Baase, E. G., Ortinski, P. I., Rupprecht, L. E., Olivos, D. R., Alhadeff, A. L., Pierce, R. C., & Hayes, M. R. (n.d.). The food intake-suppressive effects of glucagon-like peptide-1 receptor signaling in the ventral tegmental area are mediated by AMPA/kainate receptors.

Lurtz, M. M., & Louis, C. F. (n.d.). Calmodulin and protein kinase C regulate gap junctional coupling in lens epithelial cells.

Chagnaud, B. P., & Bass, A. H. (n.d.). Vocal Corollary Discharge Communicates Call Duration to Vertebrate Auditory System. https://doi.org/10.1523/JNEUROSCI.3140-13.2013

Gittens, J. E. I., Mhawi, A. A., Lidington, D., Ouellette, Y., & Kidder, G. M. (n.d.). Functional analysis of gap junctions in ovarian granulosa cells: distinct role for connexin43 in early stages of folliculogenesis. https://doi.org/10.1152/ajpcell.00277.2002

Ghisoni, K., Aguiar, A. S., de Oliveira, P. A., Matheus, F. C., Gabach, L., Perez, M., … Latini, A. (2016). Neopterin acts as an endogenous cognitive enhancer. Brain, Behavior, and Immunity, 56, 156–164. https://doi.org/10.1016/j.bbi.2016.02.019

John, N., Theilmann, W., Frieling, H., Krauss, J. K., Alam, M., Schwabe, K., & Brandt, C. (2016). Cortical electroconvulsive stimulation alleviates breeding-induced prepulse inhibition deficit in rats. Experimental Neurology, 275, 99–103. https://doi.org/10.1016/j.expneurol.2015.10.003

Pan, P.-Y., Marrs, J., & Ryan, T. A. (2015). Vesicular glutamate transporter 1 orchestrates recruitment of other synaptic vesicle cargo proteins during synaptic vesicle recycling. The Journal of Biological Chemistry, 290(37), 22593–22601. https://doi.org/10.1074/jbc.M115.651711

Ortinski, P. I., Briand, L. A., Pierce, R. C., & Schmidt, H. D. (2015). Cocaine-seeking is associated with PKC-dependent reduction of excitatory signaling in accumbens shell D2 dopamine receptor-expressing neurons. Neuropharmacology, 92, 80–89. https://doi.org/10.1016/j.neuropharm.2015.01.002

Pathak, D., Shields, L. Y., Mendelsohn, B. A., Haddad, D., Lin, W., Gerencser, A. A., … Nakamura, K. (2015). The Role of Mitochondrially Derived ATP in Synaptic Vesicle Recycling. Journal of Biological Chemistry, 290(37), 22325–22336. https://doi.org/10.1074/jbc.M115.656405

Aloisi, E. (2015). Involvement of mGluR5/Homer crosstalk disruption in the pathophysiology of Fragile X Syndrome. Retrieved from https://tel.archives-ouvertes.fr/tel-01223005

Costa, L., Sardone, L. M., Lacivita, E., Leopoldo, M., & Ciranna, L. (2015). Novel agonists for serotonin 5-HT7 receptors reverse metabotropic glutamate receptor-mediated long-term depression in the hippocampus of wild-type and Fmr1 KO mice, a model of Fragile X Syndrome. Frontiers in Behavioral Neuroscience, 9, 65. https://doi.org/10.3389/fnbeh.2015.00065

Theilmann, W., Löscher, W., Socala, K., Frieling, H., Bleich, S., & Brandt, C. (2014). A new method to model electroconvulsive therapy in rats with increased construct validity and enhanced translational value. Journal of Psychiatric Research, 53, 94–98. https://doi.org/10.1016/j.jpsychires.2014.02.007

Billingslea, E. N., Tatard-Leitman, V. M., Anguiano, J., Jutzeler, C. R., Suh, J., Saunders, J. A., … Siegel, S. J. (2014). Parvalbumin Cell Ablation of NMDA-R1 Causes Increased Resting Network Excitability with Associated Social and Self-Care Deficits. Neuropsychopharmacology, 39(7), 1603–1613. https://doi.org/10.1038/npp.2014.7

Zarzoso, M., Mironov, S., Guerrero-Serna, G., Willis, B. C., & Pandit, S. V. (2014). Ventricular remodelling in rabbits with sustained high-fat diet. Acta Physiologica, 211(1), 36–47. https://doi.org/10.1111/apha.12185

Briand, L. A., Kimmey, B. A., Ortinski, P. I., Huganir, R. L., & Pierce, R. C. (2014). Disruption of Glutamate Receptor-Interacting Protein in Nucleus Accumbens Enhances Vulnerability to Cocaine Relapse. Neuropsychopharmacology, 39(3), 759–769. https://doi.org/10.1038/npp.2013.265

Mietlicki-Baase, E. G., Ortinski, P. I., Reiner, D. J., Sinon, C. G., McCutcheon, J. E., Pierce, R. C., … Hayes, M. R. (2014). Glucagon-like peptide-1 receptor activation in the nucleus accumbens core suppresses feeding by increasing glutamatergic AMPA/kainate signaling. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 34(20), 6985–6992. https://doi.org/10.1523/JNEUROSCI.0115-14.2014

Ostrowski, T. D., Hasser, E. M., Heesch, C. M., & Kline, D. D. (2014). H₂O₂ induces delayed hyperexcitability in nucleus tractus solitarii neurons. Neuroscience, 262, 53–69. https://doi.org/10.1016/j.neuroscience.2013.12.055

Cha, R., Marescaux, J., & Diana, M. (2014). Updates on gastric electrical stimulation to treat obesity: Systematic review and future perspectives. World Journal of Gastrointestinal Endoscopy, 6(9), 419–431. https://doi.org/10.4253/wjge.v6.i9.419

Santos, M. S., Park, C. K., Foss, S. M., Li, H., & Voglmaier, S. M. (2013). Sorting of the Vesicular GABA Transporter to Functional Vesicle Pools by an Atypical Dileucine-like Motif. Journal of Neuroscience, 33(26), 10634–10646. https://doi.org/10.1523/JNEUROSCI.0329-13.2013

Yun, H. J., Park, J., Ho, D. H., Kim, H., Kim, C.-H., Oh, H., … Seol, W. (2013). LRRK2 phosphorylates Snapin and inhibits interaction of Snapin with SNAP-25. Experimental & Molecular Medicine, 45(8), e36. https://doi.org/10.1038/emm.2013.68

Zhu, Z., Sierra, A., Burnett, C. M.-L., Chen, B., Subbotina, E., Koganti, S. R. K., … Zingman, L. V. (2013). Sarcolemmal ATP-sensitive potassium channels modulate skeletal muscle function under low-intensity workloads. The Journal of General Physiology, 143(1).

Gabach, L. A., Carlini, V. P., Monti, M. C., Maglio, L. E., De Barioglio, S. R., & Perez, M. F. (2013). Involvement of nNOS/NO/sGC/cGMP signaling pathway in cocaine sensitization and in the associated hippocampal alterations: does phosphodiesterase 5 inhibition help to drug vulnerability? Psychopharmacology, 229(1), 41–50. https://doi.org/10.1007/s00213-013-3084-y

Ortinski, P. I., Turner, J. R., & Pierce, R. C. (2013). Extrasynaptic Targeting of NMDA Receptors Following D1 Dopamine Receptor Activation and Cocaine Self-Administration. Journal of Neuroscience, 33(22), 9451–9461. https://doi.org/10.1523/JNEUROSCI.5730-12.2013

Jou, S.-B., Kao, I.-F., Yi, P.-L., & Chang, F.-C. (2013). Electrical stimulation of left anterior thalamic nucleus with high-frequency and low-intensity currents reduces the rate of pilocarpine-induced epilepsy in rats. Seizure, 22(3), 221–229. https://doi.org/10.1016/j.seizure.2012.12.015

Pusch, R., Kassing, V., Riemer, U., Wagner, H.-J., von der Emde, G., & Engelmann, J. (2013). A grouped retina provides high temporal resolution in the weakly electric fish Gnathonemus petersii. Journal of Physiology-Paris, 107(1–2), 84–94. https://doi.org/10.1016/j.jphysparis.2012.06.002

Ali, I., O’Brien, P., Kumar, G., Zheng, T., Jones, N. C., Pinault, D., … O’Brien, T. J. (2013). Enduring Effects of Early Life Stress on Firing Patterns of Hippocampal and Thalamocortical Neurons in Rats: Implications for Limbic Epilepsy. PloS One, 8(6), e66962. https://doi.org/10.1371/journal.pone.0066962

Schmuckermair, C., Gaburro, S., Sah, A., Landgraf, R., Sartori, S. B., & Singewald, N. (2013). Behavioral and neurobiological effects of deep brain stimulation in a mouse model of high anxiety- and depression-like behavior. Neuropsychopharmacology : Official Publication of the American College of Neuropsychopharmacology, 38(7), 1234–1244. https://doi.org/10.1038/npp.2013.21

Ho, L., Ferruzzi, M. G., Janle, E. M., Wang, J., Gong, B., Chen, T.-Y., … Pasinetti, G. M. (2013). Identification of brain-targeted bioactive dietary quercetin-3- O -glucuronide as a novel intervention for Alzheimer’s disease. The FASEB Journal, 27(2), 769–781. https://doi.org/10.1096/fj.12-212118

Park, J., Jang, M., & Chang, S. (2013). Deleterious effects of soluble amyloid-β oligomers on multiple steps of synaptic vesicle trafficking. Neurobiology of Disease, 55, 129–139. https://doi.org/10.1016/j.nbd.2013.03.004

Costa, L., Spatuzza, M., D’Antoni, S., Bonaccorso, C. M., Trovato, C., Musumeci, S. A., … Ciranna, L. (2012). Activation of 5-HT7 Serotonin Receptors Reverses Metabotropic Glutamate Receptor-Mediated Synaptic Plasticity in Wild-Type and Fmr1 Knockout Mice, a Model of Fragile X Syndrome. Biological Psychiatry, 72(11), 924–933. https://doi.org/10.1016/j.biopsych.2012.06.008

Costa, L., Trovato, C., Musumeci, S. A., Catania, M. V., & Ciranna, L. (2012). 5-HT1A and 5-HT7 receptors differently modulate AMPA receptor-mediated hippocampal synaptic transmission. Hippocampus, 22(4), 790–801. https://doi.org/10.1002/hipo.20940

Chagnaud, B. P., Zee, M. C., Baker, R., & Bass, A. H. (2012). Innovations in motoneuron synchrony drive rapid temporal modulations in vertebrate acoustic signaling. Journal of Neurophysiology, 107(12), 3528–3542. https://doi.org/10.1152/jn.00030.2012

Pan, P.-Y., & Ryan, T. A. (2012). Calbindin controls release probability in ventral tegmental area dopamine neurons. Nature Neuroscience, 15(6), 813–815. https://doi.org/10.1038/nn.3099

Li, T., Finch, E. A., Graham, V., Zhang, Z.-S., Ding, J.-D., Burch, J., … Rosenberg, P. (2012). STIM1-Ca(2+) signaling is required for the hypertrophic growth of skeletal muscle in mice. Molecular and Cellular Biology, 32(15), 3009–3017. https://doi.org/10.1128/MCB.06599-11

Manto, M. U., Hampe, C. S., Rogemond, V., & Honnorat, J. (2011). Respective implications of glutamate decarboxylase antibodies in stiff person syndrome and cerebellar ataxia. Orphanet Journal of Rare Diseases, 6(1), 3. https://doi.org/10.1186/1750-1172-6-3

Li, H., Foss, S. M., Dobryy, Y. L., Park, C. K., Hires, S. A., Shaner, N. C., … Voglmaier, S. M. (2011). Concurrent imaging of synaptic vesicle recycling and calcium dynamics. Frontiers in Molecular Neuroscience, 4, 34. https://doi.org/10.3389/fnmol.2011.00034

Tevald, M. A., Lowman, J. D., & Pittman, R. N. (2011). Skeletal muscle arteriolar function following myocardial infarction: Analysis of branch-order effects. Microvascular Research, 81(3), 337–343. https://doi.org/10.1016/j.mvr.2011.01.007

Liu, L., Shenoy, M., & Pasricha, P. J. (2011). Substance P and calcitonin gene related peptide mediate pain in chronic pancreatitis and their expression is driven by nerve growth factor. JOP : Journal of the Pancreas, 12(4), 389–394. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/21737902

Tan, S. K. H., Janssen, M. L. F., Jahanshahi, A., Chouliaras, L., Visser-Vandewalle, V., Lim, L. W., … Temel, Y. (2011). High frequency stimulation of the subthalamic nucleus increases c-fos immunoreactivity in the dorsal raphe nucleus and afferent brain regions. Journal of Psychiatric Research, 45(10), 1307–1315. https://doi.org/10.1016/j.jpsychires.2011.04.011

Gaffield, M. A., Romberg, C. F., & Betz, W. J. (2011). Live imaging of bulk endocytosis in frog motor nerve terminals using FM dyes. Journal of Neurophysiology, 106(2), 599–607. https://doi.org/10.1152/jn.00123.2011

Blauwblomme, T., Piallat, B., Fourcade, A., David, O., & Chabardès, S. (2011). Cortical Stimulation of the Epileptogenic Zone for the Treatment of Focal Motor Seizures. Neurosurgery, 68(2), 482–490. https://doi.org/10.1227/NEU.0b013e3181ff9d14

Chagnaud, B. P., Baker, R., & Bass, A. H. (2011). Vocalization frequency and duration are coded in separate hindbrain nuclei. Nature Communications, 2, 346. https://doi.org/10.1038/ncomms1349

Arrieta-Cruz, I., Pavlides, C., & Pasinetti, G. (2010). Deep brain stimulation facilitates memory in a model of Alzheimer’s disease. Translational Neuroscience, 1(2). https://doi.org/10.2478/v10134-010-0026-7

Franks, C. J., Murray, C., Ogden, D., O’Connor, V., & Holden-Dye, L. (2009). A comparison of electrically evoked and channel rhodopsin-evoked postsynaptic potentials in the pharyngeal system of Caenorhabditis elegans. Invertebrate Neuroscience, 9(1), 43–56. https://doi.org/10.1007/s10158-009-0088-8

Zhang, J., Zhu, H., & Chen, J. D. Z. (2009). Central neuronal mechanisms of intestinal electrical stimulation: Effects on duodenum distention-responsive (DD-R) neurons in the VMH of rats. Neuroscience Letters, 457(1), 27–31. https://doi.org/10.1016/j.neulet.2009.04.007

Doisne, N., Maupoil, V., Cosnay, P., & Findlay, I. (2009). Catecholaminergic automatic activity in the rat pulmonary vein: electrophysiological differences between cardiac muscle in the left atrium and pulmonary vein. American Journal of Physiology-Heart and Circulatory Physiology, 297(1), H102–H108. https://doi.org/10.1152/ajpheart.00256.2009

Gridi-Papp, M., Feng, A. S., Shen, J.-X., Yu, Z.-L., Rosowski, J. J., & Narins, P. M. (2008). Active control of ultrasonic hearing in frogs. Proceedings of the National Academy of Sciences, 105(31), 11014–11019. https://doi.org/10.1073/pnas.0802210105

Xia, R., Berger, F., Piallat, B., & Benabid, A.-L. (2007). Alteration of hormone and neurotransmitter production in cultured cells by high and low frequency electrical stimulation. Acta Neurochirurgica, 149(1), 67–73. https://doi.org/10.1007/s00701-006-1058-0

Jones, D. L., & Baraban, S. C. (2007). Characterization of Inhibitory Circuits in the Malformed Hippocampus of Lis1 Mutant Mice. Journal of Neurophysiology, 98(5), 2737–2746. https://doi.org/10.1152/jn.00938.2007

Temel, Y., Boothman, L. J., Blokland, A., Magill, P. J., Steinbusch, H. W. M., Visser-Vandewalle, V., & Sharp, T. (2007). Inhibition of 5-HT neuron activity and induction of depressive-like behavior by high-frequency stimulation of the subthalamic nucleus. Proceedings of the National Academy of Sciences, 104(43), 17087–17092. https://doi.org/10.1073/pnas.0704144104

MCCOWN, T. (2006). Adeno-associated Virus-Mediated Expression and Constitutive Secretion of Galanin Suppresses Limbic Seizure Activity in Vivo. Molecular Therapy, 14(1), 63–68. https://doi.org/10.1016/j.ymthe.2006.04.004

ouyang, h., xing, j., & chen, j. d. z. (2005). Tachygastria induced by gastric electrical stimulation is mediated via alpha- and beta-adrenergic pathway and inhibits antral motility in dogs. Neurogastroenterology and Motility, 17(6), 846–853. https://doi.org/10.1111/j.1365-2982.2005.00696.x

Fortin, D. L., Nemani, V. M., Voglmaier, S. M., Anthony, M. D., Ryan, T. A., & Edwards, R. H. (2005). Neural Activity Controls the Synaptic Accumulation of  -Synuclein. Journal of Neuroscience, 25(47), 10913–10921. https://doi.org/10.1523/JNEUROSCI.2922-05.2005

Chen, J. D. Z., Xu, X., Zhang, J., Abo, M., Lin, X., Mccallum, R. W., & Ross, B. (2005). Efficiency and efficacy of multi-channel gastric electrical stimulation. Neurogastroenterology & Motility, 17(6), 878–882. https://doi.org/10.1046/j.1320-7881.2001.00102.x-i1

Taher, T. R., Salzberg, M., Morris, M. J., Rees, S., & O’Brien, T. J. (2005). Chronic Low-Dose Corticosterone Supplementation Enhances Acquired Epileptogenesis in the Rat Amygdala Kindling Model of TLE. Neuropsychopharmacology, 30(9), 1610–1616. https://doi.org/10.1038/sj.npp.1300709

Liu, X.-K., Yamada, S., Kane, G. C., Alekseev, A. E., Hodgson, D. M., O’Cochlain, F., … Terzic, A. (2004). Genetic Disruption of Kir6.2, the Pore-Forming Subunit of ATP-Sensitive K+ Channel, Predisposes to Catecholamine-Induced Ventricular Dysrhythmia. Diabetes, 53(Supplement 3), S165–S168. https://doi.org/10.2337/diabetes.53.suppl_3.S165

Sokolow, S., Manto, M., Gailly, P., Molgó, J., Vandebrouck, C., Vanderwinden, J.-M., … Schurmans, S. (2004). Impaired neuromuscular transmission and skeletal muscle fiber necrosis in mice lacking Na/Ca exchanger 3. Journal of Clinical Investigation, 113(2), 265–273. https://doi.org/10.1172/JCI18688

Zingman, L. V, Hodgson, D. M., Bast, P. H., Kane, G. C., Perez-Terzic, C., Gumina, R. J., … Terzic, A. (2002). Kir6.2 is required for adaptation to stress. Proceedings of the National Academy of Sciences of the United States of America, 99(20), 13278–13283. https://doi.org/10.1073/pnas.212315199

Shaw, B. K., & Kennedy, G. G. (2002). Evidence for species differences in the pattern of androgen receptor distribution in relation to species differences in an androgen-dependent behavior. Journal of Neurobiology, 52(3), 203–220. https://doi.org/10.1002/neu.10079

Faas, G. C., Adwanikar, H., Gereau, R. W., & Saggau, P. (2002). Modulation of presynaptic calcium transients by metabotropic glutamate receptor activation: a differential role in acute depression of synaptic transmission and long-term depression. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 22(16), 6885–6890. https://doi.org/20026750

Morey, T. E., Seubert, C. N., Raatikainen, M. J., Martynyuk, A. E., Druzgala, P., Milner, P., … Dennis, D. M. (2001). Structure-activity relationships and electrophysiological effects of short-acting amiodarone homologs in guinea pig isolated heart. The Journal of Pharmacology and Experimental Therapeutics, 297(1), 260–266. Retrieved from http://jpet.aspetjournals.org/content/297/1/260.abstract

Ramirez, J. J., Bulsara, K., Moore, S. C., Ruch, K., & Abrams, W. (1999). Progressive unilateral damage of the entorhinal cortex enhances synaptic efficacy of the crossed entorhinal afferent to dentate granule cells. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 19(22), RC42. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10559432

Morey, T. E., Belardinelli, L., & Dennis, D. M. (1998). Validation of Furchgott’s method to determine agonist-dependent A 1 -adenosine receptor reserve in guinea-pig atrium. British Journal of Pharmacology, 123(7), 1425–1433. https://doi.org/10.1038/sj.bjp.0701747

Lin, Z. Y., McCallum, R. W., Schirmer, B. D., & Chen, J. D. Z. (1998). Effects of pacing parameters on entrainment of gastric slow waves in patients with gastroparesis. American Journal of Physiology - Gastrointestinal and Liver Physiology, 274(1).

Ho, C. Y., & Lee, L. Y. (1998). Ozone enhances excitabilities of pulmonary C fibers to chemical and mechanical stimuli in anesthetized rats. Journal of Applied Physiology (Bethesda, Md. : 1985), 85(4), 1509–1515. Retrieved from http://jap.physiology.org/content/85/4/1509.abstract

Leckie, C. P., McAinsh, M. R., Allen, G. J., Sanders, D., & Hetherington, A. M. (1998). Abscisic acid-induced stomatal closure mediated by cyclic ADP-ribose. Proceedings of the National Academy of Sciences of the United States of America, 95(26), 15837–15842. https://doi.org/10.1073/PNAS.95.26.15837

Back to Top