UltraMicroPump3 (UMP3) with SMARTouch Controller

Item#: Make Selection

UMP3, UMP3T-1, UMP3T-2

  • Graphic display with SMARTouch™ touch screen controller for "intelligent", easy to use interface controlling up to four syringe pumps
  • Splash proof touch screen
  • User configurable mounting bar
  • Dual mode motor drive
  • Compatible with all UMP, UMP2 and UMP3 pumps
  • Optional foot switch available
  • 5 digit display
  • See Details for part numbers and descriptions

Price: varies

Qty:

System:

THIS SITE REQUIRES JAVASCRIPT AND THIRD PARTY COOKIES TO PLACE AN ORDER.
For pricing, Customers outside of the US and Canada, please Contact your distributor

Options

Part # Description
UMP3 UltraMicroPump3 (without controller)
UMP3T-1 UltraMicroPump3 (one) and Micro2T Controller
UMP3T-2 UltraMicroPump3 (two) and Micro2T Controller

 

Benefits

  • Accepts a wide variety of microinjection syringes
  • Manual or automated injections
  • Quiet operation for electrophysiology recordings
  • Mounts directly on micromanipulator or stereotaxic frame
  • Nominal injections down to 1nL
  • Rapid setup with intuitive touchscreen controller

 

Applications

  • Microinjection
  • Neuroscience
  • Microfluidics
  • Micro delivery of biochemical agents or dyes

The UltraMicroPump3 (UMP3) is a versatile pump which uses micro syringes to deliver picoliter to milliliter volumes. The pump is optimum for applications that require injections of precise and small amounts of liquid. With its touchscreen controller, UMP3 can displace as little as 0.53 µL/step (using 10 µL syringe with 60 mm scale length).

 

Patent Pending technology

The new SMARTouch™ controller for the UltraMicroPump3 features Patent Pending technology which includes:

  • Total system calibration – Calibrate the syringe and the controller together as a system. This feature eliminates the variability of the syringes and delivers the calibrated volume.
  • Smart smoothness – The controller can be set to automatically adjust microstepping according to the injection rate to deliver the smoothest flow.
  • User defined travel limits – Set the limits for a specific syringe in the software. This prevents the pump from over-driving the plunger into the syringe, potentially causing syringe breakage.

The MICRO2T SMARTouch™ controller is feature rich. All operations are controlled through interactive touch screen. It has a graphical indication of the flow and the volume remaining in the syringe. It offers end stop detection that is dependent on the syringe volume. You can control two pumps independently from one controller with its dual display. It also has automatic pump detection and a Pause/Resume feature that allows dosing during infusion/withdrawal. The volume accumulated is displayed on screen, as well as the percentage of volume left in the syringe. The SMARTouch™ controller is fully compatible with all earlier versions of the UltraMicroPump.

 

Low Fluid Dead Volume

Syringes may be filled externally and then inserted into the pump or filled while mounted in the pump. Fluids injected or withdrawn are held entirely within the micro syringe to maintain a low fluid dead volume.

 

Flexibility in Mounting

For positioning, the UMP3 may be attached to any of several WPI micropositioners such as the M3301 (manual), DC3001 (motorized) or any manual stereotaxic manipulator.

 

Rapid Setup with Intuitive Touchscreen Controller

An Integral component in the UMP3 system is the SMARTouch™ touchscreen controller, which provides an “intelligent” and easy-to-use interface up to two syringe pumps. Operating parameters are set with the touchscreen panel. An optional footswitch offers “hands free” start/stop operation.

Computer Control—A USB port on the rear of the controller can be used to connect it to a computer for scripted protocols.
NOTE: UMP3 accepts glass syringes with barrel diameters from 5.5 to 9 mm.

 

UMP3 with MICRO2T Manual

 

Quick Start Guide for UMP3 with MICRO2T

 

Syringe Volume Calculation Spreadsheet - Use this .XLS spreadsheet to calculate the volume of your syringe when you are using an UMP3, DMP, MMP or PV820/PV830.

 

Ultramicropump specifications

(based on 10 μL syringe)

Normal Mode

Travel

62 mm

Minimum dispensing volume

0.58 nL / step (10 µL syringe)

Linear motion per step

3.175 µm/half step

Weight

325 g (11.5 oz)

Mounting rod diameters

7.9 mm (0.31 in.)

Mains power supply 

90-264VAC @ 47-63Hz

Dimensions

∅ 32 mm x 190 mm

(∅ 1.3 in. x 7.5 in.)

 

Microstepping Mode

Precision is increased eight-fold.

 

Zhou, Z., Luther, N., Singh, R., Boockvar, J. A., Souweidane, M. M., & Greenfield, J. P. (2017). Glioblastoma spheroids produce infiltrative gliomas in the rat brainstem. Child’s Nervous System, 1–10. http://doi.org/10.1007/s00381-017-3344-y

Ye, H.-L., Li, D.-R., Yang, J.-S., Chen, D.-F., De Vos, S., Vuylsteke, M., … Yang, W.-J. (2017). Molecular characterization and functional analyses of a diapause hormone receptor-like gene in parthenogenetic Artemia. Peptides. http://doi.org/10.1016/j.peptides.2017.01.008

Wofford, K. L., Harris, J. P., Browne, K. D., Brown, D. P., Grovola, M. R., Mietus, C. J., … Cullen, D. K. (2017). Rapid neuroinflammatory response localized to injured neurons after diffuse traumatic brain injury in swine. Experimental Neurology, 290, 85–94. http://doi.org/10.1016/j.expneurol.2017.01.004

Qi, Y., Purtell, L., Fu, M., Zhang, L., Zolotukhin, S., Campbell, L., & Herzog, H. (2017). Hypothalamus specific re-introduction of Snord116 into otherwise Snord116 deficient mice increased energy expenditure. Journal of Neuroendocrinology. http://doi.org/10.1111/jne.12457

Mosberger, A. C., Miehlbradt, J. C., Bjelopoljak, N., Schneider, M. P., Wahl, A.-S., Ineichen, B. V., … Schwab, M. E. (2017). Axotomized Corticospinal Neurons Increase Supra-Lesional Innervation and Remain Crucial for Skilled Reaching after Bilateral Pyramidotomy. Cerebral Cortex, 137, 1716–1732. http://doi.org/10.1093/cercor/bhw405

Job, M. O., & Kuhar, M. J. (2017). CART peptide in the nucleus accumbens regulates psychostimulants: Correlations between psychostimulant and CART peptide effects. Neuroscience, 348, 135–142. http://doi.org/10.1016/j.neuroscience.2017.02.012

Eleftheriadou, I., Dieringer, M., Poh, X. Y., Sanchez-Garrido, J., Gao, Y., Sgourou, A., … Mazarakis, N. D. (2017). Selective transduction of astrocytic and neuronal CNS subpopulations by lentiviral vectors pseudotyped with Chikungunya virus envelope. Biomaterials, 123, 1–14. http://doi.org/10.1016/j.biomaterials.2017.01.023

Augestad, I. L., Nyman, A. K. G., Costa, A. I., Barnett, S. C., Sandvig, A., Håberg, A. K., & Sandvig, I. (2017). Effects of Neural Stem Cell and Olfactory Ensheathing Cell Co-transplants on Tissue Remodelling After Transient Focal Cerebral Ischemia in the Adult Rat. Neurochemical Research, 1–11. http://doi.org/10.1007/s11064-016-2098-3

Lin, P., Fang, Z., Liu, J., & Lee, J. H. (2016). Optogenetic Functional MRI. Journal of Visualized Experiments, (110), e53346–e53346. http://doi.org/10.3791/53346

Vacca, O., El Mathari, B., Darche, M., Sahel, J.-A., Rendon, A., & Dalkara, D. (2015). Using Adeno-associated Virus as a Tool to Study Retinal Barriers in Disease. Journal of Visualized Experiments, (98), e52451–e52451. http://doi.org/10.3791/52451

Lai, J., Legault, M.-A., Thomas, S., & Casanova, C. (2015). Simultaneous Electrophysiological Recording and Micro-injections of Inhibitory Agents in the Rodent Brain. Journal of Visualized Experiments, (101), e52271–e52271. http://doi.org/10.3791/52271

Robinson, S., & Adelman, J. S. (2015). A Method for Remotely Silencing Neural Activity in Rodents During Discrete Phases of Learning. Journal of Visualized Experiments, (100), e52859–e52859. http://doi.org/10.3791/52859

Platt, R. J., Chen, S., Zhou, Y., Yim, M. J., Swiech, L., Kempton, H. R., … Zhang, F. (2014). CRISPR-Cas9 Knockin Mice for Genome Editing and Cancer Modeling. Cell, 159(2), 440–55. http://doi.org/10.1016/j.cell.2014.09.014

Pierce, A. M., & Keating, A. K. (2014). Creating Anatomically Accurate and Reproducible Intracranial Xenografts of Human Brain Tumors. Journal of Visualized Experiments, (91), e52017–e52017. http://doi.org/10.3791/52017

Paveliev, M., Kislin, M., Molotkov, D., Yuryev, M., Rauvala, H., & Khiroug, L. (2014). Acute Brain Trauma in Mice Followed By Longitudinal Two-photon Imaging. Journal of Visualized Experiments : JoVE, (April), 1–8. http://doi.org/10.3791/51559

Nakamura, S., Baratta, M. V., & Cooper, D. C. (2013). A Method for High Fidelity Optogenetic Control of Individual Pyramidal Neurons <em>In vivo</em> Journal of Visualized Experiments, (79), e50291–e50291. http://doi.org/10.3791/50291

Inquimbert, P., Moll, M., Kohno, T., & Scholz, J. (2013). Stereotaxic Injection of a Viral Vector for Conditional Gene Manipulation in the Mouse Spinal Cord. Journal of Visualized Experiments, (73), e50313–e50313. http://doi.org/10.3791/50313

Hewing, N. J., Weskamp, G., Vermaat, J., Farage, E., Glomski, K., Swendeman, S., … Blobel, C. P. (2013). Intravitreal injection of TIMP3 or the EGFR inhibitor erlotinib offers protection from oxygen-induced retinopathy in mice. Investigative Ophthalmology & Visual Science, 54(1), 864–70. http://doi.org/10.1167/iovs.12-10954

Salt, A. N., Hartsock, J. J., Gill, R. M., Piu, F., & Plontke, S. K. (2012). Perilymph Pharmacokinetics of Markers and Dexamethasone Applied and Sampled at the Lateral Semi-Circular Canal. Journal of the Association for Research in Otolaryngology, 13(6), 771–783. http://doi.org/10.1007/s10162-012-0347-y

Nickerson, J. M., Goodman, P., Chrenek, M. A., Bernal, C. J., Berglin, L., Redmond, T. M., & Boatright, J. H. (2012). Subretinal delivery and electroporation in pigmented and nonpigmented adult mouse eyes. Methods in Molecular Biology (Clifton, N.J.), 884, 53–69. http://doi.org/10.1007/978-1-61779-848-1_4

Beier, K., & Cepko, C. (2012). Viral Tracing of Genetically Defined Neural Circuitry. Journal of Visualized Experiments, (68), e4253–e4253. http://doi.org/10.3791/4253

Goel, M., Sienkiewicz, A. E., Picciani, R., Wang, J., Lee, R. K., & Bhattacharya, S. K. (2012). Cochlin, intraocular pressure regulation and mechanosensing. PloS One, 7(4), e34309. http://doi.org/10.1371/journal.pone.0034309

Abdelwahab, M. G., Sankar, T., Preul, M. C., & Scheck, A. C. (2011). Intracranial Implantation with Subsequent 3D <em>In Vivo</em> Bioluminescent Imaging of Murine Gliomas. Journal of Visualized Experiments, (57), e3403–e3403. http://doi.org/10.3791/3403

Lowery, R. L., & Majewska, A. K. (2010). Intracranial Injection of Adeno-associated Viral Vectors. Journal of Visualized Experiments, (45), e2140–e2140. http://doi.org/10.3791/2140

Kinkel, M. D., Eames, S. C., Philipson, L. H., & Prince, V. E. (2010). Intraperitoneal injection into adult zebrafish. Journal of Visualized Experiments : JoVE, (42), e2126. http://doi.org/10.3791/2126

Molotkov, D. A., Yukin, A. Y., Afzalov, R. A., & Khiroug, L. S. (2010). Gene Delivery to Postnatal Rat Brain by Non-ventricular Plasmid Injection and Electroporation. Journal of Visualized Experiments, (43), e2244–e2244. http://doi.org/10.3791/2244

Marker, D. F., Tremblay, M.-E., Lu, S.-M., Majewska, A. K., & Gelbard, H. A. (2010). A Thin-skull Window Technique for Chronic Two-photon <em>In vivo</em> Imaging of Murine Microglia in Models of Neuroinflammation. Journal of Visualized Experiments, (43), e2059–e2059. http://doi.org/10.3791/2059

Eames, S. C., Philipson, L. H., Prince, V. E., & Kinkel, M. D. (2010). Blood sugar measurement in zebrafish reveals dynamics of glucose homeostasis. Zebrafish, 7(2), 205–13. http://doi.org/10.1089/zeb.2009.0640

Jasnow, A. M., Rainnie, D. G., Maguschak, K. A., Chhatwal, J. P., & Ressler, K. J. (2009). Construction of Cell-Type Specific Promoter Lentiviruses for Optically Guiding Electrophysiological Recordings and for Targeted Gene Delivery (pp. 199–213). http://doi.org/10.1007/978-1-59745-559-6_13

Christiana J. Johnson, Lennart Berglin, Micah A. Chrenek, T.M. Redmond, Jeffrey H. Boatright, J. M. N. (2008). Technical Brief: Subretinal injection and electroporation into adult mouse eyes. Molecular Vission, 14, 2211–2226. Retrieved from http://www.molvis.org/molvis/v14/a259/

Takayama, K., Torashima, T., Horiuchi, H., & Hirai, H. (2008). Purkinje-cell-preferential transduction by lentiviral vectors with the murine stem cell virus promoter. Neuroscience Letters (Vol. 443).

Torashima, T., Yamada, N., Itoh, M., Yamamoto, A., & Hirai, H. (2006). Exposure of lentiviral vectors to subneutral pH shifts the tropism from Purkinje cell to Bergmann glia. European Journal of Neuroscience, 24(2), 371–380. http://doi.org/10.1111/j.1460-9568.2006.04927.x

Torashima, T., Okoyama, S., Nishizaki, T., & Hirai, H. (2006). In vivo transduction of murine cerebellar Purkinje cells by HIV-derived lentiviral vectors. Brain Research, 1082(1), 11–22. http://doi.org/10.1016/j.brainres.2006.01.104

Cherezov, V., Peddi, A., Muthusubramaniam, L., Zheng, Y. F., & Caffrey, M. (2004). A robotic system for crystallizing membrane and soluble proteins in lipidic mesophases. Acta Crystallographica Section D Biological Crystallography, 60(10), 1795–1807. http://doi.org/10.1107/S0907444904019109

Bernd, A. S., Aihara, M., Lindsey, J. D., & Weinreb, R. N. (2004). Influence of Molecular Weight on Intracameral Dextran Movement to the Posterior Segment of the Mouse Eye. Investigative Opthalmology & Visual Science, 45(2), 480. http://doi.org/10.1167/iovs.03-0462

Shawgo, R. S. (2004). In vivo activation and biocompatibility of a MEMS microreservoir drug delivery device. Retrieved November 16, 2016, from http://citeweb.info/20041104095

Sturbaum, G. D., Reed, C., Hoover, P. J., Jost, B. H., Marshall, M. M., & Sterling, C. R. (2001). Species-Specific, Nested PCR-Restriction Fragment Length Polymorphism Detection of Single Cryptosporidium parvum Oocysts. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 67(6), 2665–2668. http://doi.org/10.1128/AEM.67.6.2665–2668.2001

Option Accessories/Replacement parts

Part# Description
13142 Footswitch for MICRO2T or MICRO4T*
502201 V-clamp for Stereotaxic Frame
503301 Extension Cable, miniDIN (male-female) 10 ft
503207 Small Base Stand and Clamps

 

*13142 is the foot pedal for use with the MICRO2T/MICRO4T ONLY. It is not compatible with the old MICRO4 controller, which uses the 15867 foot pedal. The two foot pedals are not cross-compatible.

 

The following images show various setups for microinjection. Keep in mind that parts are interchangeable.

UMP3T-2

UMP3T-2

RPE Kit in a custom holder 

RPE Kit in a custom holder

UMP3 with MTM3  

UMP3 with MTM3

« Go Back