WPI Manual Micromanipulator

As low as $1,531.00
Only %1 left
Prices valid in USA, Canada, and PR only.
Order code
Price range: $1,531 - $1,759
Prices valid in USA, Canada, and PR only.

The M3301 is a popular Manual Micromanipulator, because it is accurate, lightweight and well-engineered. This solid manipulator outsells all others worldwide for high precision experiments where magnification is in the range of up to 250x.

Weighing just 550g, it has a slim, space-saving design. Units can stand tightly grouped, since all control knobs project to the rear. Because the control knobs are clustered within an 8 cm area in a single vertical plane, resolution is quick. The hand works blindly while the eye monitors the microscopic image. Vernier scales allow readings to 0.1 mm. X-axis fine control allows readings to 10μm.

The rack-and-pinion drive, V-shaped guideways and cross roller bearings ensure smooth movement that is sure and repeatable, without drift, side play, backlash or sticking. Contact parts are milled of hardened steel for high performance and long life.

 

Prices valid in USA, Canada, and PR only.

Popular manual micromanipulator

  • The most widely used micromanipulator
  • Lightweight (550 g)
  • Sure, repeatable movement without drift
  • Choice of optional M-3 tilting base
  • Thumbscrew included for metric anti-vibration platforms with M6 holes
  • 5464 Base Weight and 15873 Angled Electrode Holder sold separately
  • Comes installed with a 12 mm clamp for the M10 magnetic base

 

Solid Micromanipulator Design for Smooth, Repeatable Movements

The M3301 is a popular Manual Micromanipulator, because it is accurate, lightweight and well-engineered. This solid manipulator outsells all others worldwide for high precision experiments where magnification is in the range of up to 250x.

Weighing just 550g, it has a slim, space-saving design. Units can stand tightly grouped, since all control knobs project to the rear. Because the control knobs are clustered within an 8 cm area in a single vertical plane, resolution is quick. The hand works blindly while the eye monitors the microscopic image. Vernier scales allow readings to 0.1 mm. X-axis fine control allows readings to 10μm.

The rack-and-pinion drive, V-shaped guideways and cross roller bearings ensure smooth movement that is sure and repeatable, without drift, side play, backlash or sticking. Contact parts are milled of hardened steel for high performance and long life.

 

 

Benefits

  • Easy access controls. All control knobs are clustered in an 8 cm area in a single vertical plane for quick resolution, allowing you to focus and easily manipulate the controls without looking away from the microscope.
  • Lightweight and portable, requiring little bench space
  • Flexible mounting options. Use a tilt base, a ring clamp, or mount directly to air table.
  • Smooth, repeatable movements. Rack-and-pinion drive, V-shaped guideways and cross roller bearings ensure smooth movement without drift, side play, backlash or sticking.
  • Long life. Hardened steel components ensure high performance for the long haul.

 

Applications

  • Microinjection
  • Electrophysiology recording

 

Important Notes

Left- or right-handed versions of the M3301 are supplied with:

  • Standard 12mm clamp (M2)
  • One microelectrode holder (M3301EH)

When it is sold with the M-3 magnetic stand, the M3301-M3 base is 1.25" tall.

 

 

Options

Order code Description
M3301R M3301 Micromanipulator
Right hand
M3301L M3301 Micromanipulator
Left hand
M3301-M3-R M3301 Micromanipulator
M3 Tilting Base
Right hand
5# weight not included
M3301-M3-L M3301 Micromanipulator
M3 Tilting Base
Left hand
5# weight not included

Benefits

  • Control knobs clustered in 8 cm area in a single vertical plane for quick resolution
  • Right and left had orientation options available

Applications

  • Microinjection
  • Electrophysiology recording

Weighing just 550g and employing a slim space-saving design, this well-built manipulator outsells all others worldwide for high precision experiments where magnification is in the range of up to 250x. Its design allows units to stand tightly grouped - since all control knobs project to the rear. Because the control knobs are clustered within an 8 cm area in a single vertical plane, resolution is quick. The hand works blindly while the eye monitors the microscopic image. Vernier scales allow readings to 0.1 mm. X-axis fine control allows readings to 10μm.

The instrument employs rack-and-pinion drive, V-shaped guideways and cross roller bearings, so all movement is sure and repeatable, without drift, side play, backlash or sticking. Contact parts are milled of hardened steel for high performance and long life.

Left- or right-handed versions of the M3301 are supplied with:

  • standard 12mm clamp (M2)
  • one microelectrode holder (M3301EH).

With the M-3 magnetic stand, the M3301-M3 base is 1.25" tall.

 

The following images show various setups for microinjection. Keep in mind that parts are interchangeable. For example:

  • M10 or the M9 magnetic base could be used.
  • PZMIV microscope could be used instead of the PZMIII.
  • M3301 or the KITE micromanipulators can be used, and these micromanipulators can be placed on either side. (Keep in mind, though, If you wanted to use a KITE on the right side of the setup below, you would order a KITE-R (right hand), or if you want an M3301 on the left side, you would order an M3301.)
  • 5479 or 5052 magnetic bases are virtually interchangeable.
  • One or two Nanoliters, one or two UMPIII systems, or one Nanoliter and one UMPIII may be used, as desired.

ONE NANOLITER/ONE UMP3-1

ONE NANOLITER/ONE UMP3-1

ONE NANOLITER

ONE NANOLITER

ONE NANOLITER/M3301

ONE NANOLITER/M3301

ONE NANOLITER/KITE

ONE NANOLITER/KITE

ONE UMP3-1

ONE UMP3-1

.

More Information
SKU VAR-3093

Manipulator Care Instruction Sheet

Video

Mounting Microelectrode Holder on M3301 Micromanipulator

 

 

Tips for Using Your Manual Micromanipulator

 

 

Mounting M3301 Micromanipulator on Tilt Base

 

 

Adjusting for Mechanical Drift in a KITE Manual Micromanipulator

 

  Travel Range Resolution
X-axis Fine 10 mm 0.01 mm
X-axis 37 mm 0.1 mm
Y-axis 20 mm 0.1 mm
Z-axis 25 mm 0.1 mm
Shipping Weight 3 lbs (1.4 kg)  

Specifications of the M3301

 

Whole-embryo culture of mouse embryos to study vascular development. (n.d.). Retrieved October 23, 2015, from http://docserv.uni-duesseldorf.de/servlets/DerivateServlet/Derivate-26166/PhDThesis_MartinZeeb.pdf

Evsen, L., & Doetzlhofer, A. (2016). Gene Transfer into the Chicken Auditory Organ by <em>In Ovo</em> Micro-electroporation. Journal of Visualized Experiments, (110), e53864–e53864. http://doi.org/10.3791/53864

Grossöhmichen, M., Salcher, R., Püschel, K., Lenarz, T., & Maier, H. (2016). Differential Intracochlear Sound Pressure Measurements in Human Temporal Bones with an Off-the-Shelf Sensor. BioMed Research International, 2016, 6059479. http://doi.org/10.1155/2016/6059479

Ito, Y. A., Belforte, N., Cueva Vargas, J. L., & Di Polo, A. (2016). A Magnetic Microbead Occlusion Model to Induce Ocular Hypertension-Dependent Glaucoma in Mice. Journal of Visualized Experiments, (109), e53731–e53731. http://doi.org/10.3791/53731

Grossöhmichen, M., Salcher, R., Kreipe, H.-H., Lenarz, T., & Maier, H. (2015). The CodacsTM Direct Acoustic Cochlear Implant Actuator: Exploring Alternative Stimulation Sites and Their Stimulation Efficiency. PLOS ONE, 10(3), e0119601. http://doi.org/10.1371/journal.pone.0119601

Mobberley, J. M., Khodadad, C. L. M., Visscher, P. T., Reid, R. P., Hagan, P., & Foster, J. S. (2015). Inner workings of thrombolites: spatial gradients of metabolic activity as revealed by metatranscriptome profiling. Scientific Reports, 5, 12601. http://doi.org/10.1038/srep12601

Nesbit, S. C., Van Hoof, A. G., Le, C. C., Dearworth, J. R., & Jr. (2015). Extracellular Recording of Light Responses from Optic Nerve Fibers and the Caudal Photoreceptor in the Crayfish. Journal of Undergraduate Neuroscience Education : JUNE : A Publication of FUN, Faculty for Undergraduate Neuroscience, 14(1), A29-38. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/26557793

Bouta, E. M., Wood, R. W., Brown, E. B., Rahimi, H., Ritchlin, C. T., & Schwarz, E. M. (2014). In vivo quantification of lymph viscosity and pressure in lymphatic vessels and draining lymph nodes of arthritic joints in mice. The Journal of Physiology, 592(6), 1213–1223. http://doi.org/10.1113/jphysiol.2013.266700

Cornwall, C. E., Boyd, P. W., McGraw, C. M., Hepburn, C. D., Pilditch, C. A., Morris, J. N., … Hurd, C. L. (2014). Diffusion boundary layers ameliorate the negative effects of ocean acidification on the temperate coralline macroalga Arthrocardia corymbosa. PloS One, 9(5), e97235. http://doi.org/10.1371/journal.pone.0097235

Shin, S.-H., Lee, S., Bae, J.-S., Jee, J.-G., Cha, H.-J., & Lee, Y. M. (2014). Thymosin beta4 regulates cardiac valve formation via endothelial-mesenchymal transformation in zebrafish embryos. Molecules and Cells, 37(4), 330–6. http://doi.org/10.14348/molcells.2014.0003

Gharbaran, R., & Aisemberg, G. O. (2013). Identification of leech embryonic neurons that express a Hox gene required for the differentiation of a paired, segment-specific motor neuron. International Journal of Developmental Neuroscience : The Official Journal of the International Society for Developmental Neuroscience, 31(2), 105–15. http://doi.org/10.1016/j.ijdevneu.2012.11.004

Loch, D., Heidel, C., Breer, H., & Strotmann, J. (2013). Adiponectin Enhances the Responsiveness of the Olfactory System. PLoS ONE, 8(10), e75716. http://doi.org/10.1371/journal.pone.0075716

Luetje, C. W., Nichols, A. S., Castro, A., & Sherman, B. L. (2013). Functional assay of mammalian and insect olfactory receptors using Xenopus oocytes. Methods in Molecular Biology (Clifton, N.J.), 1003, 187–202. http://doi.org/10.1007/978-1-62703-377-0_14

Lyons-Warren, A. M., Kohashi, T., Mennerick, S., & Carlson, B. A. (2013). Retrograde Fluorescent Labeling Allows for Targeted Extracellular Single-unit Recording from Identified Neurons <em>In vivo</em> Journal of Visualized Experiments, (76), e3921–e3921. http://doi.org/10.3791/3921

Saha, D., Leong, K., Katta, N., & Raman, B. (2013). Multi-unit Recording Methods to Characterize Neural Activity in the Locust (<em>Schistocerca Americana</em>) Olfactory Circuits. Journal of Visualized Experiments, (71), e50139–e50139. http://doi.org/10.3791/50139

Saha, D., Leong, K., Katta, N., & Raman, B. (2013). Multi-unit recording methods to characterize neural activity in the locust (Schistocerca americana) olfactory circuits. Journal of Visualized Experiments : JoVE, (71). http://doi.org/10.3791/50139

Spencer, N. J. (2013). Characteristics of colonic migrating motor complexes in neuronal NOS (nNOS) knockout mice. Frontiers in Neuroscience, 7, 184. http://doi.org/10.3389/fnins.2013.00184

Bryant, L. D., Little, J. C., & Bürgmann, H. (2012). Response of sediment microbial community structure in a freshwater reservoir to manipulations in oxygen availability. FEMS Microbiology Ecology, 80(1), 248–63. http://doi.org/10.1111/j.1574-6941.2011.01290.x

Chernet, B. T., Adams, D. S., & Levin, M. (2012). Photoconversion for tracking the dynamics of cell movement in Xenopus laevis embryos. Cold Spring Harbor Protocols, 2012(6), 683–90. http://doi.org/10.1101/pdb.prot068502

Chernet, B. T., & Levin, M. (2012). A versatile protocol for mRNA electroporation of Xenopus laevis embryos. Cold Spring Harbor Protocols, 2012(4), 447–52. http://doi.org/10.1101/pdb.prot067694

Laude, N. D., Atcherley, C. W., & Heien, M. L. (2012). Rethinking data collection and signal processing. 1. Real-time oversampling filter for chemical measurements. Analytical Chemistry, 84(19), 8422–6. http://doi.org/10.1021/ac302169y

Wang, Y., Shah, P., Phillips, C., Sims, C. E., & Allbritton, N. L. (2012). Trapping cells on a stretchable microwell array for single-cell analysis. Analytical and Bioanalytical Chemistry, 402(3), 1065–72. http://doi.org/10.1007/s00216-011-5535-9

Zeeb, M., Axnick, J., Planas-Paz, L., Hartmann, T., Strilic, B., & Lammert, E. (2012). Pharmacological manipulation of blood and lymphatic vascularization in ex vivo-cultured mouse embryos. Nature Protocols, 7(11), 1970–82. http://doi.org/10.1038/nprot.2012.120

Dong, Z., Wagle, M., & Guo, S. (2011). Time-lapse live imaging of clonally related neural progenitor cells in the developing zebrafish forebrain. Journal of Visualized Experiments : JoVE, (50). http://doi.org/10.3791/2594

Allen, M. J., & Godenschwege, T. A. (2010). Electrophysiological recordings from the Drosophila giant fiber system (GFS). Cold Spring Harbor Protocols, 2010(7), pdb.prot5453. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2946074&tool=pmcentrez&rendertype=abstract

Cianciolo Cosentino, C., Roman, B. L., Drummond, I. A., & Hukriede, N. A. (2010). Intravenous Microinjections of Zebrafish Larvae to Study Acute Kidney Injury. Journal of Visualized Experiments, (42), e2079–e2079. http://doi.org/10.3791/2079

Cygnar, K. D., Stephan, A. B., & Zhao, H. (2010). Analyzing Responses of Mouse Olfactory Sensory Neurons Using the Air-phase Electroolfactogram Recording. Journal of Visualized Experiments, (37), e1850–e1850. http://doi.org/10.3791/1850

Kulesa, P. M., Teddy, J. M., Smith, M., Alexander, R., Cooper, C. H., Lansford, R., & McLennan, R. (2010). Multispectral fingerprinting for improved in vivo cell dynamics analysis. BMC Developmental Biology, 10(1), 101. http://doi.org/10.1186/1471-213X-10-101

Seidl, A. H., & Rubel, E. W. (2010). A simple method for multiday imaging of slice cultures. Microscopy Research and Technique, 73(1), 37–44. http://doi.org/10.1002/jemt.20750

Kasri, N. N., Govek, E.-E., & Van Aelst, L. (2008). Characterization of oligophrenin-1, a RhoGAP lost in patients affected with mental retardation: lentiviral injection in organotypic brain slice cultures. Methods in Enzymology, 439, 255–66. http://doi.org/10.1016/S0076-6879(07)00419-3

Kasri, N. N., Govek, E.-E., & Van Aelst, L. (2008). Small GTPases in Disease, Part B. Methods in enzymology (Vol. 439). Elsevier. http://doi.org/10.1016/S0076-6879(07)00419-3

Rumpler, M., Woesz, A., Dunlop, J. W. ., van Dongen, J. T., & Fratzl, P. (2008). The effect of geometry on three-dimensional tissue growth. Journal of The Royal Society Interface, 5(27), 1173–1180. http://doi.org/10.1098/rsif.2008.0064

Fleisch, V. C., Jametti, T., & Neuhauss, S. C. F. (2008). Electroretinogram (ERG) Measurements in Larval Zebrafish. CSH Protocols, 2008(3), pdb.prot4973. http://doi.org/10.1101/PDB.PROT4973

Kasemeier-Kulesa, J. C., Bradley, R., Pasquale, E. B., Lefcort, F., & Kulesa, P. M. (2006). Eph/ephrins and N-cadherin coordinate to control the pattern of sympathetic ganglia. Development (Cambridge, England), 133(24), 4839–47. http://doi.org/10.1242/dev.02662

Spencer, N. J., & Smith, T. K. (2004). Mechanosensory S-neurons rather than AH-neurons appear to generate a rhythmic motor pattern in guinea-pig distal colon. The Journal of Physiology, 558(2), 577–596. http://doi.org/10.1113/jphysiol.2004.063586

Padnick, L. B., & Linsenmeier, R. A. (1999). Properties of the flash visual evoked potential recorded in the cat primary visual cortex. Vision Research, 39(17), 2833–40. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10492813

Oemar, B. S., Tschudi, M. R., Godoy, N., Brovkovich, V., Malinski, T., & Lüscher, T. F. (1998). Reduced Endothelial Nitric Oxide Synthase Expression and Production in Human Atherosclerosis. Circulation, 97(25).

Back to Top