Low Toxicity Silicone Adhesive

Item#: KWIK-SIL

Ideal for neuroscience applications, nerve studies and more

  • Bio-compatible adhesive for live tissue and nerve studies
  • Pre-mixing tips simplify use
  • Medium strength adhesion
  • Low toxicity
  • Rapid curing silicone adhesive, cure on contact
  • Cures without producing heat
  • Includes 10 Mixing Tips
  • Volume discounts - Save up to 15%!

Unit Price: 97.00

Qty:

For pricing, Customers outside of the US and Canada, please Contact your distributor

Benefits

  • Low toxicity
  • Rapid cure time

Applications

  • Neuroscience and nerve studies
  • Biomedical applications

Kwik-Sil and Kwik-Cast silicones have very low toxicity before, during and after curing. The by-product of curing is a small amount of hydrogen gas, which is much less toxic to cells than acetic acid or alcohol from traditional RTV silicone systems. 

Kwik-Sil and Kwik-Cast  curing speed is hundreds of times faster than traditional RTV silicones. A curing time of a few minutes at room temperature is especially useful for encapsulation of live tissue or implanting into a live animal. Unlike many vinyl-based silicones in which the platinum complex catalysts are easily poisoned by contamination from amines and animal tissue, Kwik-Sil and Kwik-Cast  are not sensitive to contamination from animal tissue.

Kwik-Sil™ is a translucent, medium-viscosity silicone adhesive, developed for chronic peripheral nerve studies such as anterograde tracing with fluorescent indicators or electrode recording. Good adhesion and mechanical properties (tear strength and elongation) allow days of study without breaking of the bonding. Curing speed is very reproducible.

Kwik-Cast™ is a very low viscosity silicone sealant developed to embed peripheral nerves with electrodes for acute multi-fiber recordings. It flows easily, filling the small spaces around the nerve and leaving no channels through which peritoneal fluid can travel and thus short the nerve/electrode contact. Equally important is the ability of the material to flow into itself and create one continuous mass from underneath the nerve all the way to the top of the nerve/electrode contact to ensure long-term recording stability. Kwik-Cast is color-coded to make the mixing foolproof. The catalyst is yellow and the base is blue. When uniformly mixed, it is green. Kwik-Cast can be applied and cured underneath mineral oil. After recording, electrodes are easily recovered due to the low tear strength. The slight longer curing time (approx. 3 minutes) makes it more suitable for stationary preparations and in vitro tissue studies.

New TiThese mixing tips may be used with KWIK-SIL or KWIK-CAST.p Design

Kwik-Sil and Kwik-Cast now come with a new tip design. The new tip is engineered to minimize leakage.

Curing Time

The properties of this bio-compatible adhesive make it exceptionally useful for neuroscience applications, peripheral nerve studies and similar biomedical applications. These  silicone elastomers also eliminate the mess and time involved in pre-mixing other commonly used formulations (such as Wacker SilGel® and Sylgard®). Each silicone elastomer is packaged in a double barrel syringe and is automatically mixed when pressed out of the mixer tip provided. It can then be applied directly to the tissue without further mixing. The curing time of these silicone adhesives is short, reliable and reproducible. This eliminating potential costly guesswork when using other tissue adhesives. The curing process does not produce any heat, which can  cause tissue damage. WPI's silicone elastomers are much less toxic than dental silicone, because they contain no surfactant additives.

Yang, Z., Xie, W., Ju, F., khan, A., & Zhang, S. (2017). In vivo two-photon imaging reveals a role of progesterone in reducing axonal dieback after spinal cord injury in mice. Neuropharmacology, 116, 30–37. http://doi.org/10.1016/j.neuropharm.2016.12.007 

Paoli, M., Andrione, M., & Haase, A. (2017). Imaging Techniques in Insects (pp. 471–519). http://doi.org/10.1007/978-1-4939-6725-4_15 

Madden, C. J., Santos da Conceicao, E. P., & Morrison, S. F. (2017). Vagal afferent activation decreases brown adipose tissue (BAT) sympathetic nerve activity and BAT thermogenesis. Temperature, 4(1), 89–96. http://doi.org/10.1080/23328940.2016.1257407 

Laszt?czi, B., & Klausberger, T. (2017). Distinct gamma oscillations in the distal dendritic fields of the dentate gyrus and the CA1 area of mouse hippocampus. Brain Structure and Function, 1–11. http://doi.org/10.1007/s00429-017-1421-3 

Kawada, T., Turner, M. J., Shimizu, S., Fukumitsu, M., Kamiya, A., & Sugimachi, M. (2017). Aortic depressor nerve stimulation does not impede the dynamic characteristics of the carotid sinus baroreflex in normotensive or spontaneously hypertensive rats. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, 312(5). Retrieved from http://ajpregu.physiology.org/content/312/5/R787 

Bassi, G. S., Dias, D. P. M., Franchin, M., Talbot, J., Reis, D. G., Menezes, G. B., … Kanashiro, A. (2017). Modulation of experimental arthritis by vagal sensory and central brain stimulation. Brain, Behavior, and Immunity, 64, 330–343. http://doi.org/10.1016/j.bbi.2017.04.003 

Balkowiec, A., Kunze, D. L., & Katz, D. M. (n.d.). Brain-Derived Neurotrophic Factor Acutely Inhibits AMPA-Mediated Currents in Developing Sensory Relay Neurons.

Bechtold, A. G., & Scheuer, D. A. (n.d.). Glucocorticoids act in the dorsal hindbrain to modulate baroreflex control of heart rate.

Gao, L., Zhu, Z., Zucker, I. H., & Wang, W. (n.d.). Cardiac sympathetic afferent stimulation impairs baroreflex control of renal sympathetic nerve activity in rats.

Kakegawa, W., Miyazaki, T., Kohda, K., Matsuda, K., Emi, K., Motohashi, J., … Yuzaki, M. (n.d.). The N-Terminal Domain of GluD2 (GluR␦2) Recruits Presynaptic Terminals and Regulates Synaptogenesis in the Cerebellum In Vivo. http://doi.org/10.1523/JNEUROSCI.6013-08.2009

Luckett, B. S., Frielle, J. L., Wolfgang, L., & Stocker, S. D. (n.d.). Arcuate nucleus injection of an anti-insulin affibody prevents the sympathetic response to insulin.

Mizuno, M., Murphy, M. N., Mitchell, J. H., & Smith, S. A. (n.d.). Skeletal muscle reflex-mediated changes in sympathetic nerve activity are abnormal in spontaneously hypertensive rats.

Salgado-Commissariat, D., & Alkadhi, K. A. Serotonin inhibits epileptiform discharge by activation of 5-HT1A receptors in CA1 pyramidal neurons. Neuropharmacology, 36(11–12), 1705–12. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9517442

Wang, W.-Z., Gao, L., Wang, H.-J., Zucker, I. H., & Wang, W. (n.d.). Interaction between cardiac sympathetic afferent reflex and chemoreflex is mediated by the NTS AT 1 receptors in heart failure.

Xie, C., Sachs, J. R., & Wang, D. H. (n.d.). Interdependent Regulation of Afferent Renal Nerve Activity and Renal Function: Role of Transient Receptor Potential Vanilloid Type 1, Neurokinin 1, and Calcitonin Gene-Related Peptide Receptors. http://doi.org/10.1124/jpet.108.136374

Yamamoto, K., Kawada, T., Kamiya, A., Takaki, H., Miyamoto, T., Sugimachi, M., & Sunagawa, K. (n.d.). Muscle mechanoreflex induces the pressor response by resetting the arterial baroreflex neural arc.

Thompson, Z. S., Rijal, N. P., Jarvis, D., Edwards, A., & Bhattarai, N. (2016). Synthesis of Keratin-based Nanofiber for Biomedical Engineering. Journal of Visualized Experiments, (108), e53381–e53381. http://doi.org/10.3791/53381

Schwarz, M. K., Scherbarth, A., Sprengel, R., Engelhardt, J., Theer, P., Giese, G., … Tomancak, P. (2015). Fluorescent-Protein Stabilization and High-Resolution Imaging of Cleared, Intact Mouse Brains. PLOS ONE, 10(5), e0124650. http://doi.org/10.1371/journal.pone.0124650

Farrar, M. J., & Schaffer, C. B. (2014). A Procedure for Implanting a Spinal Chamber for Longitudinal <em>In Vivo </em>Imaging of the Mouse Spinal Cord. Journal of Visualized Experiments, (94), e52196–e52196. http://doi.org/10.3791/52196

Kawada, T., Li, M., Zheng, C., Shimizu, S., Uemura, K., Turner, M. J., … Sugimachi, M. (2014). Chronic vagal nerve stimulation improves baroreflex neural arc function in heart failure rats Chronic vagal nerve stimulation im- proves baroreflex neural arc function in heart failure rats. J Appl Physiol, 116, 1308–1314. http://doi.org/10.1152/japplphysiol.00140.2014

Kawada, T., Li, M., Zheng, C., Shimizu, S., Uemura, K., Turner, M. J., … Sugimachi, M. (2014). Chronic vagal nerve stimulation improves baroreflex neural arc function in heart failure rats. Journal of Applied Physiology (Bethesda, Md. : 1985), 116(10), 1308–14. http://doi.org/10.1152/japplphysiol.00140.2014

Kislin, M., Mugantseva, E., Molotkov, D., Kulesskaya, N., Khirug, S., Kirilkin, I., … Khiroug, L. (2014). Flat-floored Air-lifted Platform: A New Method for Combining Behavior with Microscopy or Electrophysiology on Awake Freely Moving Rodents. Journal of Visualized Experiments, (88), e51869–e51869. http://doi.org/10.3791/51869

Rodríguez-Contreras, A., Shi, L., & Fu, B. M. (2014). A Method to Make a Craniotomy on the Ventral Skull of Neonate Rodents. Journal of Visualized Experiments, (87), e51350–e51350. http://doi.org/10.3791/51350

Roome, C. J., & Kuhn, B. (2014). Chronic cranial window with access port for repeated cellular manipulations, drug application, and electrophysiology. Frontiers in Cellular Neuroscience, 8, 379. http://doi.org/10.3389/fncel.2014.00379

Zimmermann, J. B., & Jackson, A. (2014). Closed-loop control of spinal cord stimulation to restore hand function after paralysis. Frontiers in Neuroscience, 8, 87. http://doi.org/10.3389/fnins.2014.00087

Fenrich, K. K., Weber, P., Rougon, G., & Debarbieux, F. (2013). Implanting Glass Spinal Cord Windows in Adult Mice with Experimental Autoimmune Encephalomyelitis. Journal of Visualized Experiments, (82), e50826–e50826. http://doi.org/10.3791/50826

Woolley, A. J., Desai, H. A., Gaire, J., Ready, A. L., & Otto, K. J. (2013). Intact Histological Characterization of Brain-implanted Microdevices and Surrounding Tissue. Journal of Visualized Experiments, (72), e50126–e50126. http://doi.org/10.3791/50126

Fenrich, K. K., Weber, P., Hocine, M., Zalc, M., Rougon, G., & Debarbieux, F. (2012). Long-term in vivo imaging of normal and pathological mouse spinal cord with subcellular resolution using implanted glass windows. The Journal of Physiology, 590(Pt 16), 3665–75. http://doi.org/10.1113/jphysiol.2012.230532

Gage, G. J., Stoetzner, C. R., Richner, T., Brodnick, S. K., Williams, J. C., & Kipke, D. R. (2012). Surgical implantation of chronic neural electrodes for recording single unit activity and electrocorticographic signals. Journal of Visualized Experiments : JoVE, (60), e3565. http://doi.org/10.3791/3565

Morgan, S. J., & Paolini, A. G. (2012). Behavioral Determination of Stimulus Pair Discrimination of Auditory Acoustic and Electrical Stimuli Using a Classical Conditioning and Heart-rate Approach. Journal of Visualized Experiments, (64), e3598–e3598. http://doi.org/10.3791/3598

Shi, Z., Chen, W.-W., Xiong, X.-Q., Han, Y., Zhou, Y.-B., Zhang, F., … Zhu, G.-Q. (2012). Sympathetic activation by chemical stimulation of white adipose tissues in rats. J Appl Physiol, 112, 1008–1014. http://doi.org/10.1152/japplphysiol.01164.2011

Silbering, A. F., Bell, R., Galizia, C. G., & Benton, R. (2012). Calcium Imaging of Odor-evoked Responses in the <em>Drosophila</em> Antennal Lobe. Journal of Visualized Experiments, (60), e2976–e2976. http://doi.org/10.3791/2976

Harris, J. P., Capadona, J. R., Miller, R. H., Healy, B. C., Shanmuganathan, K., Rowan, S. J., … Tyler, D. J. (2011). Mechanically adaptive intracortical implants improve the proximity of neuronal cell bodies. Journal of Neural Engineering, 8(6), 66011. http://doi.org/10.1088/1741-2560/8/6/066011

Cullins, M. J., & Chiel, H. J. (2010). Electrode Fabrication and Implantation in <em>Aplysia californica</em> for Multi-channel Neural and Muscular Recordings in Intact, Freely Behaving Animals. Journal of Visualized Experiments, (40), e1791–e1791. http://doi.org/10.3791/1791

Huber, D. A., & Schreihofer, A. M. (2010). Attenuated baroreflex control of sympathetic nerve activity in obese Zucker rats by central mechanisms. The Journal of Physiology, 588(9), 1515–1525. http://doi.org/10.1113/jphysiol.2009.186387

Kamiya, A., Kawada, T., Mizuno, M., Shimizu, S., & Sugimachi, M. (2010). Parallel resetting of arterial baroreflex control of renal and cardiac sympathetic nerve activities during upright tilt in rabbits. Am J Physiol Heart Circ Physiol, 298, 1966–1975. http://doi.org/10.1152/ajpheart.00340.2009.—Since

Morgan, D. A., & Rahmouni, K. (2010). Differential effects of insulin on sympathetic nerve activity in agouti obese mice. Journal of Hypertension, 28(9), 1913–9. http://doi.org/10.1097/HJH.0b013e32833c2289

Battaglia, F. P., Kalenscher, T., Cabral, H., Winkel, J., Bos, J., Manuputy, R., … Pennartz, C. (2009). The Lantern: an ultra-light micro-drive for multi-tetrode recordings in mice and other small animals. Journal of Neuroscience Methods, 178(2), 291–300. http://doi.org/10.1016/j.jneumeth.2008.12.024

Bechtold, A. G., Patel, G., Hochhaus, G., & Scheuer, D. A. (2009). Chronic blockade of hindbrain glucocorticoid receptors reduces blood pressure responses to novel stress and attenuates adaptation to repeated stress. Am J Physiol Regul Integr Comp Physiol, 296, 1445–1454. http://doi.org/10.1152/ajpregu.00095.2008

Dombeck, D. A., Graziano, M. S., & Tank, D. W. (2009). Functional clustering of neurons in motor cortex determined by cellular resolution imaging in awake behaving mice. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 29(44), 13751–60. http://doi.org/10.1523/JNEUROSCI.2985-09.2009

Haehnel, M., Froese, A., & Menzel, R. (2009). <em>In vivo</em> Ca<sup>2+</sup>- Imaging of Mushroom Body Neurons During Olfactory Learning in the Honey Bee. Journal of Visualized Experiments, (30), e1353–e1353. http://doi.org/10.3791/1353

Jackson, N., & Muthuswamy, J. (2008). Artificial dural sealant that allows multiple penetrations of implantable brain probes. Journal of Neuroscience Methods, 171(1), 147–52. http://doi.org/10.1016/j.jneumeth.2008.02.018

Spitler, K. M., & Gothard, K. M. (2008). A removable silicone elastomer seal reduces granulation tissue growth and maintains the sterility of recording chambers for primate neurophysiology. Journal of Neuroscience Methods, 169(1), 23–6. http://doi.org/10.1016/j.jneumeth.2007.11.026

Pan, Y.-X., Gao, L., Wang, W.-Z., Zheng, H., Liu, D., Patel, K. P., … Wang, W. (2007). Exercise Training Prevents Arterial Baroreflex Dysfunction in Rats Treated With Central Angiotensin II. Hypertension, 49(3).

Kurata, K., Heino, T. J., Higaki, H., & Väänänen, H. K. (2006). Bone Marrow Cell Differentiation Induced by Mechanically Damaged Osteocytes in 3D Gel-Embedded Culture. Journal of Bone and Mineral Research, 21(4), 616–625. http://doi.org/10.1359/jbmr.060106

Sachse, S., Peele, P., Silbering, A. F., Gühmann, M., & Galizia, C. G. (2006). Role of histamine as a putative inhibitory transmitter in the honeybee antennal lobe. Frontiers in Zoology, 3(1), 22. http://doi.org/10.1186/1742-9994-3-22

Barrett, C. J., Guild, S.-J., Ramchandra, R., & Malpas, S. C. (2005). Baroreceptor denervation prevents sympathoinhibition during angiotensin II-induced hypertension. Hypertension, 46(1), 168–72. http://doi.org/10.1161/01.HYP.0000168047.09637.d4

Gao, L., Wang, W., Li, Y.-L., Schultz, H. D., Liu, D., Cornish, K. G., & Zucker, I. H. (2005). Sympathoexcitation by central ANG II: Roles for AT 1 receptor upregulation and NAD(P)H oxidase in RVLM Sympatho- excitation by central ANG II: Roles for AT 1 receptor upregulation and NAD(P)H oxidase in RVLM. Am J Physiol Heart Circ Physiol, 288, 2271–2279. http://doi.org/10.1152/ajpheart.00949.2004

Barann, M., Dilger, J. P., Bönisch, H., Göthert, M., Dybek, A., & Urban, B. W. (2000). Inhibition of 5-HT3 receptors by propofol: equilibrium and kinetic measurements. Neuropharmacology, 39(6), 1064–74. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10727717

Mire, P., Nasse, J., & Venable-Thibodeaux, S. (2000). Gap junctional communication in the vibration-sensitive response of sea anemones. Hearing Research, 144(1–2), 109–23. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10831870

Cannon, S. C., & Corey, D. P. (1993). Loss of Na+ channel inactivation by anemone toxin (ATX II) mimics the myotonic state in hyperkalaemic periodic paralysis. The Journal of Physiology, 466, 501–20. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1175489&tool=pmcentrez&rendertype=abstract

600022 Replacement Tips

Q: I want to use Kwik Sil in my "imaging" experiments in rats. How do I get rid of the bubbles completely, or at least reduce them as much as possible?

A: The bubbles are hydrogen gas that is released as a by-product of the curing process. The cure happens in such a short period that the gas can't escape. A slower cure time might help. To slow the cure process, cool the material before mixing. 

« Go Back