Animal Temperature Controller

Item#: ATC2000
  • Animal Temperature Controller with Adaptive mode–auto adjust PID regardless of animal size
  • PID control for maximum temperature stability
  • Low noise DC heater
  • Three temperature sensor inputs
  • Auto shutdown if the plate reaches 45°C

Price: 1302.00

Qty:

THIS SITE REQUIRES JAVASCRIPT AND THIRD PARTY COOKIES TO PLACE AN ORDER.
For pricing, Customers outside of the US and Canada, please Contact your distributor

The current Data Sheet describes the Animal Temperature Controller and warming pad.

This introduction video shows all the highlights of the ATC2000 animal temperature controller ( 3 minutes). See the full-size video.
`

ATC2000 Animal Temperature Controller is a low noise heating system for maintaining animal body temperature during experimental procedures. The DC heater is extremely quiet in terms of electromagnetic radiation. This is essential in electrophysiological recordings which are very sensitive to electromagnetic interference.

The controller uses proportional, integral, and derivative (PID) technology in adjusting the DC voltage output. Compared with switched on/off type controllers, PID controllers provide a much more precise and stable control of temperature. The PID approach is also more immune to the variation of the experimental conditions such as change in animal size and unexpected disturbances.

The Animal Temperature Controller has three temperature sensing inputs. 

  • The resistive temperature device (RTD) probe input can be used to monitor an RTD rectal probe to control the animal temperature or to monitor ambient temperature, induction chamber temperature or any other temperature.
  • When using a thermocouple probe, the thermocouple (TC) probe input can be used just like the RTD input. (A T type thermocouple must be used.)
  • The heater plate also has an internal temperature sensor. The ATC2000 monitors this sensor to prevent the localized hot spots under animal. 

The controller has three operational modes:

  • Normal mode uses the configured sensor (RTD or TC) or the plate sensor to drive the control loop.
  • Adaptive mode uses the temperature of the heated plate and the temperature of the subject to control. This approach is less prone to overshoot, but somewhat slower the normal mode, depending on the sampling rate used.
  • Shutdown is a fail safe mode used if the plate temperature ever exceeds 45°C.

The ATC2000 Animal Temperature Controller is tuned at the factory. However, the PID parameters may also be set manually. The temperature resolution of the controller is 0.1°C. The rectal temperature probe has a 6-ft ultra-flexible, shielded cable and an RTD sensor. 

The metal heating plates (available separately) have built-in temperature sensors. Compatible with stereotaxic systems, the rigid, flat surface of the warming pads fits under the U-frame. Our homeothermic warming pads are washable with water and detergent.

Required Accessories

A heating plate and a probe are required for use with this unit. Please see the Accessories tab.

Resolution 0.1°C
Accuracy ±0.3°C
Rat Sensor RTD Ø 2.0 mm tube with 3.5mm ball head
Maximum DC Output 10V, 3A
Temperature range Up to 45°C
Power Universal AC adapter 90-264V Input, 12V@4.5A maximum output
Dimensions 3.47x8.21x10.85" (8.8x20.9x27.6cm)
Weight 11 lb. (5kg)

Nguyen Chi, V., Müller, C., Wolfenstetter, T., Yanovsky, Y., Draguhn, A., Tort, A. B. L., & Brankačk, J. (2016). Hippocampal Respiration-Driven Rhythm Distinct from Theta Oscillations in Awake Mice. Journal of Neuroscience, 36(1).

Okun, M., Lak, A., Carandini, M., Harris, K. D., Buzsaki, G., Stevenson, I., … Kaufman, M. (2016). Long Term Recordings with Immobile Silicon Probes in the Mouse Cortex. PLOS ONE, 11(3), e0151180. http://doi.org/10.1371/journal.pone.0151180

Shahjouei, S., Cai, P. Y., Ansari, S., Sharififar, S., Azari, H., Ganji, S., & Zand, R. (2016). Middle Cerebral Artery Occlusion Model of Stroke in Rodents: A Step-by-Step Approach. Journal of Vascular and Interventional Neurology, 8(5), 1–8. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4762402&tool=pmcentrez&rendertype=abstract

Gaylo, A., Overstreet, M. G., & Fowell, D. J. (2016). Imaging CD4 T Cell Interstitial Migration in the Inflamed Dermis. Journal of Visualized Experiments, (109), e53585–e53585. http://doi.org/10.3791/53585

Happel, M. F. K., Deliano, M., & Ohl, F. W. (2015). Combined Shuttle-Box Training with Electrophysiological Cortex Recording and Stimulation as a Tool to Study Perception and Learning. Journal of Visualized Experiments, (104), e53002–e53002. http://doi.org/10.3791/53002

Arnold, W. D., Sheth, K. A., Wier, C. G., Kissel, J. T., Burghes, A. H., & Kolb, S. J. (2015). Electrophysiological Motor Unit Number Estimation (MUNE) Measuring Compound Muscle Action Potential (CMAP) in Mouse Hindlimb Muscles. Journal of Visualized Experiments, (103), e52899–e52899. http://doi.org/10.3791/52899

San Martín, A., Ceballo, S., Baeza-Lehnert, F., Lerchundi, R., Valdebenito, R., Contreras-Baeza, Y., … Barros, L. F. (2014). Imaging mitochondrial flux in single cells with a FRET sensor for pyruvate. PloS One, 9(1), e85780. http://doi.org/10.1371/journal.pone.0085780

NOTE: One sensor and one plate are required to operate the ATC2000

7363-4 Enzol enzymatic detergent, gallon
7364-4 Cidex Plus biocide, gallon
61800 Medium Heating Pad with built-in RTD sensor, 15x25cm
61830 Small Heating Pad with built-in RTD sensor, 15x10cm
61840 Heating Pad with built-in RTD sensor for stereotaxic frame, 15x4cm
61824 RTD Rectal Temperature Probe, 1.2mm shaft diameter, 2.5mm ball tip
RET-2 TC Rectal Probe, 3.175mm ball tip
RET-3 TC Rectal Probe, 1.6mm ball tip
503573 Silicone pad for ATC2000 (10x15cm)

 

« Go Back