Thin Wall Glass Capillaries

Item#: Make Selection

TW100-3, TW100-4, TW100-6, TW100F-3, TW100F-4,  TW100F-6, TW120-3, TW120-4, TW120-6, TW120F-3, TW120F-4, TW120F-6, TW150-3, TW150-4, TW150-6,  TW150F-3, TW150F-4, TW150F-6

Quality glass, superior prices for microinjection and microelelctrodes

  • Quality borosilicate glass capillaries
  • Large variety available
  • Some varieties are fire polished (See description)
  • See Details for part numbers

Unit Price: varies

Qty:

Item#:

For pricing, Customers outside of the US and Canada, please Contact your distributor

Thin-Wall Single-Barrel Standard Borosilicate (Schott Duran) Glass Tubing Options

ItemOD (mm)ID (mm)FilamentFire PolishLengthQty
TW100F-3 1.0 0.75   3 in. (76mm) 500
TW100-3   1.0 0.75     3 in. (76mm) 500
TW120F-3   1.2 0.90 3 in. (76mm) 400
TW120-3   1.2 0.90     3 in. (76mm) 350
TW150F-3   1.5 1.12   3 in. (76mm) 225
TW150-3   1.5 1.12   3 in. (76mm) 300
TW100F-4   1.0 0.75   4 in. (100mm) 500
TW100-4   1.0 0.75   4 in. (100mm) 500
TW120F-4   1.2 0.90   4 in. (100mm) 350
TW120-4   1.2 0.90     4 in. (100mm) 350
TW150F-4   1.5 1.12   4 in. (100mm) 225
TW150-4   1.5 1.12   4 in. (100mm) 300
TW100F-6   1.0 0.75   6 in. (152mm) 500
TW100-6   1.0 0.75   6 in. (152mm) 500
TW120F-6   1.2 0.90 6 in. (152mm) 400
TW120-6   1.2 0.90     6 in. (152mm) 350
TW150F-6   1.5 1.12   6 in. (152mm) 225
TW150-6   1.5 1.12   6 in. (152mm) 300

Benefits

  • Superior pricing
  • Most glass orders ship within 48 hours

Applications

  • Microinjection
  • Electrophysiology
  • Patch clamp
  • Fluid Handling

Fire Polishing

Fire-Polished glass capillaries are easier to insert into microelectrode holders without damaging the gasket. More importantly, fire-polished glass won’t scratch the chloridized wire used in a recording electrode. Fire-polishing does not affect the glass’s mechanical or electrical properties.

Making Uniform, Reproducible Microelectrodes

Borosilicate glass capillaries: Close di­men­sion­al tol­er­anc­es assure mi­cro­elec­trode uni­for­mi­ty and reproducibility. Capillaries are available in 1, 2, 3, 5 and 7-barrel con­fig­u­ra­tions, complete range of single bar­rel thin-wall siz­es and a variety of special con­fig­u­ra­tions. Cap­il­lar­ies with filaments con­tain a solid fil­a­ment fused to the inner wall, which speeds filling of electrodes. Cap­il­lar­ies with or with­out inner filaments are available for making microelectrodes in a wide range of diameters.

Filament Glass Capillaries

Single Barrel standard wall thickness cap­il­lar­ies are offered either with or without in­ner fil­a­ments for quick filling in a variety of lengths and diameters.

Thin Wall Glass Capillaries

Thin Wall single barrel capillaries are of­fered both with or without inner filaments.

 

NOTE: Because electrode tips erode when left filled with saline solutions for long periods, electrodes should be made and filled immediately prior to use. 


 

More Information on Glass Capillary

Buying Multi-Barrel Glass Capillaries
Buying Capillaries for Making Micropipettes and Microelectrodes

Download the catalog page.

 

 

Henao-Mejia, J., Williams, A., Rongvaux, A., Stein, J., Hughes, C., & Flavell, R. A. (2016). Generation of Genetically Modified Mice Using the CRISPR-Cas9 Genome-Editing System. Cold Spring Harbor Protocols, 2016(2), pdb.prot090704. http://doi.org/10.1101/pdb.prot090704 

Xie, Y., Zhou, Y., Xi, W., Zeng, F., & Chen, S. (2016). Fabrication of a Cell Fixation Device for Robotic Cell Microinjection. Micromachines, 7(8), 131. http://doi.org/10.3390/mi7080131

Engerer, P., Plucinska, G., Thong, R., Trovò, L., Paquet, D., & Godinho, L. (2016). Imaging Subcellular Structures in the Living Zebrafish Embryo. Journal of Visualized Experiments, (110), e53456–e53456. http://doi.org/10.3791/53456

Vidal, G. S., Djurisic, M., Brown, K., Sapp, R. W., & Shatz, C. J. (2016). Cell-Autonomous Regulation of Dendritic Spine Density by PirB. eNeuro, 3(5). http://doi.org/10.1523/ENEURO.0089-16.2016

Lai, J., Legault, M.-A., Thomas, S., & Casanova, C. (2015). Simultaneous Electrophysiological Recording and Micro-injections of Inhibitory Agents in the Rodent Brain. Journal of Visualized Experiments, (101), e52271–e52271. http://doi.org/10.3791/52271

Smith, S. J., Horstick, E. J., Davidson, A. E., & Dowling, J. (2015). Analysis of Zebrafish Larvae Skeletal Muscle Integrity with Evans Blue Dye. Journal of Visualized Experiments, (105), e53183–e53183. http://doi.org/10.3791/53183

Lundgaard, I., Li, B., Xie, L., Kang, H., Sanggaard, S., Haswell, J. D. R., … Nedergaard, M. (2015). Direct neuronal glucose uptake heralds activity-dependent increases in cerebral metabolism. Nature Communications, 6, 6807. http://doi.org/10.1038/ncomms7807

Deline, M., Keller, J., Rothe, M., Schunck, W.-H., Menzel, R., & Watts, J. L. (2015). Epoxides Derived from Dietary Dihomo-Gamma-Linolenic Acid Induce Germ Cell Death in C. elegans. Scientific Reports, 5, 15417. http://doi.org/10.1038/srep15417

Jarriault, D., & Grosmaitre, X. (2015). Perforated Patch-clamp Recording of Mouse Olfactory Sensory Neurons in Intact Neuroepithelium: Functional Analysis of Neurons Expressing an Identified Odorant Receptor. Journal of Visualized Experiments, (101), e52652–e52652. http://doi.org/10.3791/52652

Leslie, J. L., Huang, S., Opp, J. S., Nagy, M. S., Kobayashi, M., Young, V. B., & Spence, J. R. (2015). Persistence and toxin production by Clostridium difficile within human intestinal organoids result in disruption of epithelial paracellular barrier function. Infection and Immunity, 83(1), 138–45. http://doi.org/10.1128/IAI.02561-14

Konantz, J., & Antos, C. L. (2014). Reverse Genetic Morpholino Approach Using Cardiac Ventricular Injection to Transfect Multiple Difficult-to-target Tissues in the Zebrafish Larva. Journal of Visualized Experiments, (88), e51595–e51595. http://doi.org/10.3791/51595

Thomson, S. J., Hansen, A., & Sanguinetti, M. C. (2014). Concerted all-or-none subunit interactions mediate slow deactivation of human ether-à-go-go-related gene K+ channels. The Journal of Biological Chemistry, 289(34), 23428–36. http://doi.org/10.1074/jbc.M114.582437

Voigt, D., Konrad, W., & Gorb, S. (2014). A universal glue: underwater adhesion of the secretion of the carnivorous flypaper plant Roridula gorgonias. Interface Focus, 5(1).

Walton, K. D., & Kolterud, Å. (2014). Mouse Fetal Whole Intestine Culture System for <em>Ex Vivo</em> Manipulation of Signaling Pathways and Three-dimensional Live Imaging of Villus Development. Journal of Visualized Experiments, (91), e51817–e51817. http://doi.org/10.3791/51817

Harms, D. W., Quadros, R. M., Seruggia, D., Ohtsuka, M., Takahashi, G., Montoliu, L., & Gurumurthy, C. B. (2014). Mouse Genome Editing Using the CRISPR/Cas System. Current Protocols in Human Genetics, 83, 15.7.1-27. http://doi.org/10.1002/0471142905.hg1507s83

Wang, R., Palavicini, J. P., Wang, H., Maiti, P., Bianchi, E., Xu, S., … Lakshmana, M. K. (2014). RanBP9 overexpression accelerates loss of dendritic spines in a mouse model of Alzheimer’s disease. Neurobiology of Disease, 69, 169–79. http://doi.org/10.1016/j.nbd.2014.05.029

Jang, J., Um, K. B., Jang, M., Kim, S. H., Cho, H., Chung, S., … Park, M. K. (2014). Balance between the proximal dendritic compartment and the soma determines spontaneous firing rate in midbrain dopamine neurons. The Journal of Physiology, 592(13), 2829–44. http://doi.org/10.1113/jphysiol.2014.275032

Tonini, R., Ferraro, T., Sampedro-Castañeda, M., Cavaccini, A., Stocker, M., Richards, C. D., & Pedarzani, P. (2013). Small-conductance Ca2+-activated K+ channels modulate action potential-induced Ca2+ transients in hippocampal neurons. Journal of Neurophysiology, 109(6), 1514–24. http://doi.org/10.1152/jn.00346.2012

Recording Pipettes. (2013). Cold Spring Harbor Protocols, 2013(2), pdb.rec073759-rec073759. http://doi.org/10.1101/pdb.rec073759

Yang, D., Zhang, J., Xu, J., Zhu, T., Fan, Y., Fan, J., & Chen, Y. E. (2013). Production of Apolipoprotein C-III Knockout Rabbits using Zinc Finger Nucleases. Journal of Visualized Experiments, (81), e50957–e50957. http://doi.org/10.3791/50957

Nemes, P., Rubakhin, S. S., Aerts, J. T., & Sweedler, J. V. (2013). Qualitative and quantitative metabolomic investigation of single neurons by capillary electrophoresis electrospray ionization mass spectrometry. Nature Protocols, 8(4), 783–99. http://doi.org/10.1038/nprot.2013.035

Johnston, L., Ball, R. E., Acuff, S., Gaudet, J., Sornborger, A., & Lauderdale, J. D. (2013). Electrophysiological Recording in the Brain of Intact Adult Zebrafish. Journal of Visualized Experiments, (81), e51065–e51065. http://doi.org/10.3791/51065

Layden, M. J., Röttinger, E., Wolenski, F. S., Gilmore, T. D., & Martindale, M. Q. (2013). Microinjection of mRNA or morpholinos for reverse genetic analysis in the starlet sea anemone, Nematostella vectensis. Nature Protocols, 8(5), 924–34. http://doi.org/10.1038/nprot.2013.009

Cao, Y., Pan, Y., Huang, H., Jin, X., Levin, E. J., Kloss, B., & Zhou, M. (2013). Gating of the TrkH ion channel by its associated RCK protein TrkA. Nature, 496(7445), 317–22. http://doi.org/10.1038/nature12056

Raissig, M. T., Gagliardini, V., Jaenisch, J., Grossniklaus, U., & Baroux, C. (2013). Efficient and Rapid Isolation of Early-stage Embryos from <em>Arabidopsis thaliana</em> Seeds. Journal of Visualized Experiments, (76), e50371–e50371. http://doi.org/10.3791/50371

Alfaqeeh, S. A., & Tucker, A. S. (2013). The Slice Culture Method for Following Development of Tooth Germs In Explant Culture. Journal of Visualized Experiments, (81), e50824–e50824. http://doi.org/10.3791/50824

Ludwar, B. C., Evans, C. G., & Cropper, E. C. (2012). Monitoring changes in the intracellular calcium concentration and synaptic efficacy in the mollusc Aplysia. Journal of Visualized Experiments : JoVE, (65), e3907. http://doi.org/10.3791/3907

Luo, J., Yan, X., Lin, J., & Rolfs, A. (2012). Gene transfer into older chicken embryos by ex ovo electroporation. Journal of Visualized Experiments : JoVE, (65). http://doi.org/10.3791/4078

Yang, B., Geary, L. B., & Ma, Y.-C. (2012). No Title, (66). http://doi.org/10.3791/4017

Veeman, M. T., Chiba, S., & Smith, W. C. (2011). Ciona genetics. Methods in Molecular Biology (Clifton, N.J.), 770, 401–22. http://doi.org/10.1007/978-1-61779-210-6_15

Kariu, T., Coleman, A. S., Anderson, J. F., & Pal, U. (2011). Methods for Rapid Transfer and Localization of Lyme Disease Pathogens Within the Tick Gut. Journal of Visualized Experiments, (48), e2544–e2544. http://doi.org/10.3791/2544

Gao, L., Kim, Y., Kim, B., Lofgren, S. M., Schultz-Norton, J. R., Nardulli, A. M., … Jorgensen, J. S. (2011). Two regions within the proximal steroidogenic factor 1 promoter drive somatic cell-specific activity in developing gonads of the female mouse. Biology of Reproduction, 84(3), 422–34. http://doi.org/10.1095/biolreprod.110.084590

Staton, A. A., & Giraldez, A. J. (2011). Use of target protector morpholinos to analyze the physiological roles of specific miRNA-mRNA pairs in vivo. Nature Protocols, 6(12), 2035–49. http://doi.org/10.1038/nprot.2011.423

Farah, C. A., & Sossin, W. S. (2011). No Title, (50), e2516–e2516. http://doi.org/10.3791/2516

Goldman, N., Chen, M., Fujita, T., Xu, Q., Peng, W., Liu, W., … Nedergaard, M. (2010). Adenosine A1 receptors mediate local anti-nociceptive effects of acupuncture. Nature Neuroscience, 13(7), 883–8. http://doi.org/10.1038/nn.2562

Shen, Z. L., Dodge, M. R., Kahn, H., Ballarini, R., & Eppell, S. J. (2010). In vitro fracture testing of submicron diameter collagen fibril specimens. Biophysical Journal, 99(6), 1986–95. http://doi.org/10.1016/j.bpj.2010.07.021

Clemons, A., Haugen, M., Severson, D., & Duman-Scheel, M. (2010). Functional analysis of genes in Aedes aegypti embryos. Cold Spring Harbor Protocols, 2010(10), pdb.prot5511. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/20889708

Stofanko, M., Kwon, S. Y., & Badenhorst, P. (2010). Lineage tracing of lamellocytes demonstrates Drosophila macrophage plasticity. PloS One, 5(11), e14051. http://doi.org/10.1371/journal.pone.0014051

Russek-Blum, N., Nabel-Rosen, H., & Levkowitz, G. (2010). Two-Photon-Based Photoactivation in Live Zebrafish Embryos. Journal of Visualized Experiments, (46), e1902–e1902. http://doi.org/10.3791/1902

Kumar, V., Alla, S. R., Krishnan, K. S., & Ramaswami, M. (2009). Syndapin is dispensable for synaptic vesicle endocytosis at the Drosophila larval neuromuscular junction. Molecular and Cellular Neurosciences, 40(2), 234–41. http://doi.org/10.1016/j.mcn.2008.10.011

Wang, X., Takano, T., & Nedergaard, M. (2009). Astrocytic calcium signaling: mechanism and implications for functional brain imaging. Methods in Molecular Biology (Clifton, N.J.), 489, 93–109. http://doi.org/10.1007/978-1-59745-543-5_5

Werren, J. H., Loehlin, D. W., & Giebel, J. D. (2009). Larval RNAi in Nasonia (parasitoid wasp). Cold Spring Harbor Protocols, 2009(10), pdb.prot5311. http://doi.org/10.1101/pdb.prot5311

Imlach, W., & McCabe, B. D. (2009). Electrophysiological Methods for Recording Synaptic Potentials from the NMJ of Drosophila Larvae. Journal of Visualized Experiments, (24), e1109–e1109. http://doi.org/10.3791/1109

Werren, J. H., & Loehlin, D. W. (2009). The parasitoid wasp Nasonia: an emerging model system with haploid male genetics. Cold Spring Harbor Protocols, 2009(10), pdb.emo134. http://doi.org/10.1101/pdb.emo134

Chen, K., Augustin, H., & Featherstone, D. E. (2009). No Title, 195(1). http://doi.org/10.1007/s00359-008-0378-3

Stofanko, M., Kwon, S. Y., & Badenhorst, P. (2008). A misexpression screen to identify regulators of Drosophila larval hemocyte development. Genetics, 180(1), 253–67. http://doi.org/10.1534/genetics.108.089094

Luo, J., & Redies, C. (2005). Ex ovo electroporation for gene transfer into older chicken embryos. Developmental Dynamics, 233(4), 1470–1477. http://doi.org/10.1002/dvdy.20454

Xi, Z., & Dobson, S. L. (2005). Characterization of Wolbachia transfection efficiency by using microinjection of embryonic cytoplasm and embryo homogenate. Applied and Environmental Microbiology, 71(6), 3199–204. http://doi.org/10.1128/AEM.71.6.3199-3204.2005

Jerng, H. H., Qian, Y., & Pfaffinger, P. J. (2004). Modulation of Kv4.2 channel expression and gating by dipeptidyl peptidase 10 (DPP10). Biophysical Journal, 87(4), 2380–96. http://doi.org/10.1529/biophysj.104.042358

Gómez-Viquez, L., Guerrero-Serna, G., García, U., & Guerrero-Hernández, A. (2003). SERCA pump optimizes Ca2+ release by a mechanism independent of store filling in smooth muscle cells. Biophysical Journal, 85(1), 370–80. http://doi.org/10.1016/S0006-3495(03)74481-6

 

 

« Go Back