Multi-Port Measurement Chamber

$1,077.00
Order code
NOCHM-4

4-port closed chamber for measurements of NO, O2, H2O2 & other species in cell culture, temperature stabilized

  • Four port (NOCHM-4) chamber accommodates WPI’s 2 mm sensors for nitric oxide (ISO-NOP), oxygen (ISO-OXY-2), hydrogen peroxide (ISO-HPO-2) and WPI’s KWIK-TIP ion selective electrodes in combination with WPI’s 2 mm Dri-Ref reference electrodes
  • Two additional top ports for injection of reagents using WPI’s MicroFil™ syringe needles
  • Temperature control through an external circulating bath
  • The chamber can be used for nitric oxide and other species calibration at temperatures from 4-40 ºC

Benefits

  • Closed chamber design greatly reduces the surface area of the solution exposed to air
  • One top port and up to three side ports configuration provides adequate space for convenient sample and electrode manipulation

Applications

  • Simultaneously measurement of free radicals such as NO, H2O2, H2S, O2 and other ions at controlled conditions for cultured cell, cell suspensions or biological media

Better than stirring

The measurement of NO and other reactive gases dissolved in solutions will be underestimated in stirred conditions if the solution is allowed to equilibrate with air. In the case of NO, accelerated decomposition occurs as the result of diffusion of NO from the solution into the gas phase and the reaction of NO with oxygen. This reaction with oxygen makes a significant and variable contribution to NO decomposition, and hence accuracy of measurement, at concentrations of NO between 0.1-5 µM. These problems can now be eliminated with the use of WPI's two-port NOCHM or four-port NOCHM-4 closed chambers. The chambers consist of a close fitting cap through which a NO probe (ISO-NOP) or other electrode can be inserted. When the probe is in place and the cap is fitted to the chamber the surface area of the solution exposed to air is greatly reduced. Up to three optional side ports are also provided through which an oxygen electrode* (e.g., OXELP), WPI's hydrogen peroxide, or KWIK-TIP ion selective electrodes in combination with WPI's 2 mm Dri-Ref™ reference electrodes can be inserted.

Temperature control

The multi-port measurement chambers can be conveniently temperature-controlled by circulating water through the outer sleeve of the chamber using an appropriate heating/cooling circulator bath. The inner volume of the chamber (and hence sample volume) can be continuously adjusted in volume from 1.0 mL to 3.0 mL and is suitable for most cell suspension experiments.

Volume of Sample 1-3 mL
Sample Injection Ports 2 (top)
Number of Electrode Ports 4
Electrode Compatibility: Nitric Oxide Electrode ISO-NOP
Electrode Compatibility: Hydrogen Peroxide Electrode ISO-HPO-2
Electrode Compatibility: Calcium Electrode KWIKCAL-2
Electrode Compatibility: Hydrogen Electrode KWIKH-2
Electrode Compatibility: Potassium Electrode KWIKPOT -2
Electrode Compatibility: TPP (tetraphenylphosphonium) Electrode KWIKTPP-2
Electrode Compatibility: Dri-Ref Electrode DRIREF-2
Electrode Compatibility: SUPER-Dri-Ref Electrode SDR2
Temperature Range of Circulating Water 4-40 ºC
Notes: Water inlet and outlet require 1/4-in. ID tubing

Robin, E., Derichard, A., Vallet, B., Hassoun, S. M., & Neviere, R. (n.d.). Nitric oxide scavenging modulates mitochondrial dysfunction induced by hypoxia/reoxygenation.

Fig. 1 ISO-NO Mark II NO meter electrode connector pin out diagram... - Scientific Figure on ResearchGate. (n.d.). Retrieved from https://www.researchgate.net/figure/24416336_fig1_Fig-1-ISO-NO-Mark-II-NO-meter-electrode-connector-pin-out-diagram-panel-connector

Liu, X., El-Mahdy, M. A., Boslett, J., Varadharaj, S., Hemann, C., Abdelghany, T. M., … Zweier, J. L. (2017). Cytoglobin regulates blood pressure and vascular tone through nitric oxide metabolism in the vascular wall. Nature Communications, 8, 14807. https://doi.org/10.1038/ncomms14807

Santos, S. S., Jesus, R. L. C., Simões, L. O., Vasconcelos, W. P., Medeiros, I. A., Veras, R. C., … Silva, D. F. (2017). NO production and potassium channels activation induced by Crotalus durissus cascavella underlie mesenteric artery relaxation. Toxicon, 133, 10–17. https://doi.org/10.1016/j.toxicon.2017.04.010

Olson, K. R., Gao, Y., DeLeon, E. R., Arif, M., Arif, F., Arora, N., & Straub, K. D. (2017). Catalase as a sulfide-sulfur oxido-reductase: An ancient (and modern?) regulator of reactive sulfur species (RSS). Redox Biology, 12, 325–339. https://doi.org/10.1016/j.redox.2017.02.021

Zhou, D., Hemann, C., Boslett, J., Luo, A., Zweier, J. L., & Liu, X. (2017). Oxygen binding and nitric oxide dioxygenase activity of cytoglobin are altered to different extents by cysteine modification. FEBS Open Bio, 7(6), 845–853. https://doi.org/10.1002/2211-5463.12230

DeLeon, E. R., Gao, Y., Huang, E., Arif, M., Arora, N., Divietro, A., … Olson, K. R. (2016). A case of mistaken identity: are reactive oxygen species actually reactive sulfide species? American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 310(7), R549–R560. https://doi.org/10.1152/ajpregu.00455.2015

Stephens, R. S., Servinsky, L. E., Rentsendorj, O., Kolb, T. M., Pfeifer, A., & Pearse, D. B. (2014). Protein kinase G increases antioxidant function in lung microvascular endothelial cells by inhibiting the c-Abl tyrosine kinase. American Journal of Physiology-Cell Physiology, 306(6), C559–C569. https://doi.org/10.1152/ajpcell.00375.2012

Hemme, D., Veyel, D., Mühlhaus, T., Sommer, F., Jüppner, J., Unger, A.-K., … Schroda, M. (2014). Systems-Wide Analysis of Acclimation Responses to Long-Term Heat Stress and Recovery in the Photosynthetic Model Organism Chlamydomonas reinhardtii. The Plant Cell Online, 26(11), 4270–4297. https://doi.org/10.1105/tpc.114.130997

Dantas, B., Ribeiro, T., Assis, V., Furtado, F., Assis, K., Alves, J., … Braga, V. (2014). Vasorelaxation Induced by a New Naphthoquinone-Oxime is Mediated by NO-sGC-cGMP Pathway. Molecules, 19(7), 9773–9785. https://doi.org/10.3390/molecules19079773

Dantas, B., Ribeiro, T., Assis, V., Furtado, F., Assis, K., Alves, J., … Braga, V. (2014). Vasorelaxation Induced by a New Naphthoquinone-Oxime is Mediated by NO-sGC-cGMP Pathway. Molecules, 19(7), 9773–9785. https://doi.org/10.3390/molecules19079773

Liu, X., Tong, J., Zweier, J. R., Follmer, D., Hemann, C., Ismail, R. S., & Zweier, J. L. (2013). Differences in oxygen-dependent nitric oxide metabolism by cytoglobin and myoglobin account for their differing functional roles. FEBS Journal, 280(15), 3621–3631. https://doi.org/10.1111/febs.12352

Anidi, I. U., Servinsky, L. E., Rentsendorj, O., Stephens, R. S., Scott, A. L., & Pearse, D. B. (2013). CD36 and Fyn Kinase Mediate Malaria-Induced Lung Endothelial Barrier Dysfunction in Mice Infected with Plasmodium berghei. PLoS ONE, 8(8), e71010. https://doi.org/10.1371/journal.pone.0071010

Liu, X., Follmer, D., Zweier, J. R., Huang, X., Hemann, C., Liu, K., … Zweier, J. L. (2012). Characterization of the Function of Cytoglobin as an Oxygen-Dependent Regulator of Nitric Oxide Concentration. Biochemistry, 51(25), 5072–5082. https://doi.org/10.1021/bi300291h

Ball, K. A., Nelson, A. W., Foster, D. G., & Poyton, R. O. (2012). Nitric oxide produced by cytochrome c oxidase helps stabilize HIF-1α in hypoxic mammalian cells. Biochemical and Biophysical Research Communications, 420(4), 727–732. https://doi.org/10.1016/j.bbrc.2012.03.050

Ball, K. A., Nelson, A. W., Foster, D. G., & Poyton, R. O. (2012). Nitric oxide produced by cytochrome c oxidase helps stabilize HIF-1α in hypoxic mammalian cells. Biochemical and Biophysical Research Communications, 420(4), 727–732. https://doi.org/10.1016/j.bbrc.2012.03.050

Robin, E., Simerabet, M., Hassoun, S. M., Adamczyk, S., Tavernier, B., Vallet, B., … Lebuffe, G. (2011). Postconditioning in focal cerebral ischemia: Role of the mitochondrial ATP-dependent potassium channel. Brain Research, 1375, 137–146. https://doi.org/10.1016/j.brainres.2010.12.054

Talukder, M. A. H., Johnson, W. M., Varadharaj, S., Lian, J., Kearns, P. N., El-Mahdy, M. A., … Zweier, J. L. (2011). Chronic cigarette smoking causes hypertension, increased oxidative stress, impaired NO bioavailability, endothelial dysfunction, and cardiac remodeling in mice. American Journal of Physiology-Heart and Circulatory Physiology, 300(1), H388–H396. https://doi.org/10.1152/ajpheart.00868.2010

Ferreira, P. G., Lima, M. A. S. S., Bernedo-Navarro, R. A., Conceição, R. A., Linhares, E., Sawaya, A. C. H. F., … Salgado, I. (2011). Stimulation of Acidic Reduction of Nitrite to Nitric Oxide by Soybean Phenolics: Possible Relevance to Gastrointestinal Host Defense. Journal of Agricultural and Food Chemistry, 59(10), 5609–5616. https://doi.org/10.1021/jf201229x

Ball, K. A., Castello, P. R., & Poyton, R. O. (2011). Low intensity light stimulates nitrite-dependent nitric oxide synthesis but not oxygen consumption by cytochrome c oxidase: Implications for phototherapy. Journal of Photochemistry and Photobiology B: Biology, 102(3), 182–191. https://doi.org/10.1016/j.jphotobiol.2010.12.002

Talukder, M. A. H., Johnson, W. M., Varadharaj, S., Lian, J., Kearns, P. N., El-Mahdy, M. A., … Zweier, J. L. (2011). Chronic cigarette smoking causes hypertension, increased oxidative stress, impaired NO bioavailability, endothelial dysfunction, and cardiac remodeling in mice. American Journal of Physiology - Heart and Circulatory Physiology, 300(1).

Robin, E., Derichard, A., Vallet, B., Hassoun, S. M., & Neviere, R. (2011). Nitric oxide scavenging modulates mitochondrial dysfunction induced by hypoxia/reoxygenation. Pharmacological Reports : PR, 63(5), 1189–1194. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/22180361

Ballot, C., Kluza, J., Lancel, S., Martoriati, A., Hassoun, S. M., Mortier, L., … Marchetti, P. (2010). Inhibition of mitochondrial respiration mediates apoptosis induced by the anti-tumoral alkaloid lamellarin D. Apoptosis, 15(7), 769–781. https://doi.org/10.1007/s10495-010-0471-2

Liu, X., El-Sherbiny, G. A., Collard, E., Huang, X., Follmer, D., El-Mahdy, M., & Zweier, J. L. (2010). Application of carbon fiber composite minielectrodes for measurement of kinetic constants of nitric oxide decay in solution. Nitric Oxide : Biology and Chemistry, 23(4), 311–318. https://doi.org/10.1016/j.niox.2010.09.002

Liu, X., El-Sherbiny, G. A., Collard, E., Huang, X., Follmer, D., El-Mahdy, M., & Zweier, J. L. (2010). Application of carbon fiber composite minielectrodes for measurement of kinetic constants of nitric oxide decay in solution. Nitric Oxide, 23(4), 311–318. https://doi.org/10.1016/j.niox.2010.09.002

Liu, Y.-H., & Bian, J.-S. (2010). Bicarbonate-dependent effect of hydrogen sulfide on vascular contractility in rat aortic rings. American Journal of Physiology-Cell Physiology, 299(4), C866–C872. https://doi.org/10.1152/ajpcell.00105.2010

Neviere, R., Hassoun, S. M., Decoster, B., Bouazza, Y., Montaigne, D., Maréchal, X., … Lancel, S. (2010). Caspase-dependent protein phosphatase 2A activation contributes to endotoxin-induced cardiomyocyte contractile dysfunction*. Critical Care Medicine, 38(10), 2031–2036. https://doi.org/10.1097/CCM.0b013e3181eedafb

Stephens, R. S., Rentsendorj, O., Servinsky, L. E., Moldobaeva, A., Damico, R., & Pearse, D. B. (2010). cGMP increases antioxidant function and attenuates oxidant cell death in mouse lung microvascular endothelial cells by a protein kinase G-dependent mechanism. American Journal of Physiology-Lung Cellular and Molecular Physiology, 299(3), L323–L333. https://doi.org/10.1152/ajplung.00442.2009

Castera, L., Hatzfeld-Charbonnier, A. S., Ballot, C., Charbonnel, F., Dhuiege, E., Velu, T., … Marchetti, P. (2009). Apoptosis-related mitochondrial dysfunction defines human monocyte-derived dendritic cells with impaired immuno-stimulatory capacities. Journal of Cellular and Molecular Medicine, 13(7), 1321–1335. https://doi.org/10.1111/j.1582-4934.2008.00358.x

Rees, M. D., Bottle, S. E., Fairfull-Smith, K. E., Malle, E., Whitelock, J. M., & Davies, M. J. (2009). Inhibition of myeloperoxidase-mediated hypochlorous acid production by nitroxides. Biochemical Journal, 421(1), 79–86. https://doi.org/10.1042/BJ20090309

Oliveira, H. C., Saviani, E. E., & Salgado, I. (2009). NAD(P)H- and superoxide-dependent nitric oxide degradation by rat liver mitochondria. FEBS Letters, 583(13), 2276–2280. https://doi.org/10.1016/j.febslet.2009.06.012

Presley, T., Vedam, K., Liu, X., Zweier, J. L., & Ilangovan, G. (2009). Activation of Hsp90/NOS and increased NO generation does not impair mitochondrial respiratory chain by competitive binding at cytochrome C Oxidase in low oxygen concentrations. Cell Stress and Chaperones, 14(6), 611–627. https://doi.org/10.1007/s12192-009-0114-0

Wulff, A., Oliveira, H. C., Saviani, E. E., & Salgado, I. (2009). Nitrite reduction and superoxide-dependent nitric oxide degradation by Arabidopsis mitochondria: Influence of external NAD(P)H dehydrogenases and alternative oxidase in the control of nitric oxide levels. Nitric Oxide, 21(2), 132–139. https://doi.org/10.1016/j.niox.2009.06.003

Pekarova, M., Kralova, J., Kubala, L., Ciz, M., Lojek, A., Gregor, C., & Hrbac, J. (2009). Continuous electrochemical monitoring of nitric oxide production in murine macrophage cell line RAW 264.7. Analytical and Bioanalytical Chemistry, 394(5), 1497–1504. https://doi.org/10.1007/s00216-009-2813-x

Castera, L., Hatzfeld-Charbonnier, A. S., Ballot, C., Charbonnel, F., Dhuiege, E., Velu, T., … Marchetti, P. (2009). Apoptosis-related mitochondrial dysfunction defines human monocyte-derived dendritic cells with impaired immuno-stimulatory capacities. Journal of Cellular and Molecular Medicine, 13(7), 1321–1335. https://doi.org/10.1111/j.1582-4934.2008.00358.x

Lam, M. A., Pattison, D. I., Bottle, S. E., Keddie, D. J., & Davies, M. J. (2008). Nitric Oxide and Nitroxides Can Act as Efficient Scavengers of Protein-Derived Free Radicals. Chemical Research in Toxicology, 21(11), 2111–2119. https://doi.org/10.1021/tx800183t

Liu, X., Yan, Q., Baskerville, K. L., & Zweier, J. L. (2007). Estimation of Nitric Oxide Concentration in Blood for Different Rates of Generation. Journal of Biological Chemistry, 282(12), 8831–8836. https://doi.org/10.1074/jbc.M611684200

Liu, X., Yan, Q., Baskerville, K. L., & Zweier, J. L. (2007). Estimation of nitric oxide concentration in blood for different rates of generation. Evidence that intravascular nitric oxide levels are too low to exert physiological effects. The Journal of Biological Chemistry, 282(12), 8831–8836. https://doi.org/10.1074/jbc.M611684200

Hassoun, S. M., Lancel, S., Petillot, P., Decoster, B., Favory, R., Marchetti, P., & Neviere, R. (2006). Sphingosine impairs mitochondrial function by opening permeability transition pore. Mitochondrion, 6(3), 149–154. https://doi.org/10.1016/j.mito.2006.05.001

Edwards, J. C., Johnson, M. S., & Taylor, B. L. (2006). Differentiation between electron transport sensing and proton motive force sensing by the Aer and Tsr receptors for aerotaxis. Molecular Microbiology, 62(3), 823–837. https://doi.org/10.1111/j.1365-2958.2006.05411.x

Larche, J., Lancel, S., Hassoun, S. M., Favory, R., Decoster, B., Marchetti, P., … Neviere, R. (2006). Inhibition of Mitochondrial Permeability Transition Prevents Sepsis-Induced Myocardial Dysfunction and Mortality. Journal of the American College of Cardiology, 48(2), 377–385. https://doi.org/10.1016/j.jacc.2006.02.069

Kramarenko, G. G., Hummel, S. G., Martin, S. M., & Buettner, G. R. (2006). Ascorbate reacts with singlet oxygen to produce hydrogen peroxide. Photochemistry and Photobiology, 82(6), 1634–1637. https://doi.org/10.1562/2006-01-12-RN-774

Liu, X., Liu, Q., Gupta, E., Zorko, N., Brownlee, E., & Zweier, J. L. (2005). Quantitative measurements of NO reaction kinetics with a Clark-type electrode. Nitric Oxide, 13(1), 68–77. https://doi.org/10.1016/j.niox.2005.04.011

Liu, X., Cheng, C., Zorko, N., Cronin, S., Chen, Y.-R., & Zweier, J. L. (2004). Biphasic modulation of vascular nitric oxide catabolism by oxygen. American Journal of Physiology-Heart and Circulatory Physiology, 287(6), H2421–H2426. https://doi.org/10.1152/ajpheart.00487.2004

 

©Copyright 2020. World Precision Instruments. All rights reserved.

Apply for Tax Exempt Status
WPI collects tax in AL, AZ, CA, CO, CT, DC, FL, GA, IL, IN, MA, ME, MD, MI, MN, MO, NC, NV, NJ, NY, OH, OK, PA, SC, TN, TX, VA, VT, WA and WI