Need to Conserve Precious Sample?

Try NanoFil™ Low Dead Volume Syringes

microliter syringe

NanoFil™ Syringes are 10 µL and 100 μL syringes for low volume injections. It makes quantitative nanoliter injection much easier and more accurate than any other method currently in use. When you must conserve your sample, NanoFil is your solution. And, for a limited time you can get FREE Shipping on your NanoFil order.

 

 

neuroscienceophthalmologyviral injectionsCapillary Electrophoresis

 

 

 

 

 

Easy to Fill Syringe

 

 

Special Applications

ultramicropump with rpe kit

 

 

  • Retinal Pigment Epithelium Injection

  • Mouse Brain Injection

  • Intravitreal Injection (with RPE-KIT)

  • Intraoccular Injection (with IO-KIT)

 

Application kits are used exclusively with a NanoFil™ syringe and UMP3 to achieve accurate and repeatable oil free injections down to sub-microliter ranges. The Silflex tubing is a very important component of the kit. This 35 cm long, flexible tubing has a precise outer diameter for an airtight fitting with the syringe. It also has a small inner diameter to minimize dead volume. The SilFlex is coupled to the injection tip with a seal system similar to that of the NanoFil. The dead volume of the entire kit (including the tubing) is less than 3 microliters. 

 

 

 

The NanoFil syringe and needles are uniquely designed for microliter injections in ophthalmology, neuroscience and other research applications. See the difference for yourself!

 

Testimonial

"My lab uses the hand-held IO injection kit for intracerebroventricular AAV injections in mice. It is so easy to use that a first-timer undergraduate-level researcher had a 100% success rate with injections, and my lab has now completely switched to injecting manually with the IO kit. NanoFil itself is easy to use and comes with extremely fine needles, which reduces the tissue damage when injecting adult animals. Overall, we are extremely happy with the purchase and the support we receive from WPI. The only thing we are not doing according to the manual is cleaning. The plunger is easily damaged, so my lab is very careful not to pull it out all the way during the cleaning." (Adema Ribic, PhD, Primary Investigator at the Ribic Lab at the University of Virginia)

Who Is WPI?

With over 50 years in the business of serving scientists and researchers, you can trust us.

WPI Metrics

 

microliter syringe

Ophthalmology References 

Chu-Tan, J. A., Fernando, N., Aggio-Bruce, R., Cioanca, A. V., Valter, K., Andronikou, N., … Natoli, R. (2020). A method for gene knockdown in the retina using a lipid-based carrier. Molecular Vision26, 48–63. Retrieved from http://www.molvis.org/molvis/v26/48

 Calvo, E., Milla-navarro, S., Ortuño-lizarán, I., Gómez-vicente, V., Cuenca, N., De la Villa, P., & Germain, F. (2020). Article deleterious effect of nmda plus kainate on the inner retinal cells and ganglion cell projection of the mouse. International Journal of Molecular Sciences21(5). https://doi.org/10.3390/ijms21051570

Weh, E., Lutrzykowska, Z., Smith, A., Hager, H., Pawar, M., Wubben, T. J., & Besirli, C. G. (2020). Hexokinase 2 is dispensable for photoreceptor development but is required for survival during aging and outer retinal stress. Cell Death & Disease11(6), 422. https://doi.org/10.1038/s41419-020-2638-2

Vigouroux, R. J., César, Q., Chédotal, A., & Nguyen-Ba-Charvet, K. T. (2020). Revisiting the role of DCC in visual system development with a novel eye clearing method. ELife9https://doi.org/10.7554/eLife.51275

Ross, B. X., Choi, J., Yao, J., Hager, H. M., Abcouwer, S. F., & Zacks, D. N. (2020). Loss of high-mobility group box 1 (HMGB1) protein in rods accelerates rod photoreceptor degeneration after retinal detachment. Investigative Ophthalmology and Visual Science61(5). https://doi.org/10.1167/IOVS.61.5.50

Feola, A. J., Sherwood, J. M., Pardue, M. T., Overby, D. R., & Ethier, C. R. (2020). Age and menopause effects on ocular compliance and aqueous outflow. Investigative Ophthalmology and Visual Science61(5). https://doi.org/10.1167/IOVS.61.5.16

Puścian, A., Benisty, H., & Higley, M. J. (2020). NMDAR-Dependent Emergence of Behavioral Representation in Primary Visual Cortex. Cell Reports32(4), 107970. https://doi.org/10.1016/j.celrep.2020.107970

Neuroscience References

Tosi, U., Kommidi, H., Adeuyan, O., Guo, H., Maachani, U. B., Chen, N., … Souweidane, M. M. (2020). PET, image-guided HDAC inhibition of pediatric diffuse midline glioma improves survival in murine models. Science Advances6(30), eabb4105. https://doi.org/10.1126/sciadv.abb4105

Abolhasanpour, N., Hajebrahimi, S., Ebrahimi-Kalan, A., Mehdipour, A., & Salehi-Pourmehr, H. (2020, January 1). Urodynamic parameters in spinal cord injury-induced neurogenic bladder rats after stem cell transplantation: A narrative review. Iranian Journal of Medical Sciences. Shiraz University of Medical Sciences. https://doi.org/10.30476/ijms.2019.45318

Baracchi, D., Cabirol, A., Devaud, J. M., Haase, A., d’Ettorre, P., & Giurfa, M. (2020). Pheromone components affect motivation and induce persistent modulation of associative learning and memory in honey bees. Communications Biology3(1). https://doi.org/10.1038/s42003-020-01183-x

Other References

Abdul Hamid, A. I., Nakusi, L., Givskov, M., Chang, Y. T., Marquès, C., & Gueirard, P. (2020). A mouse ear skin model to study the dynamics of innate immune responses against Staphylococcus aureus biofilms. BMC Microbiology20(1). https://doi.org/10.1186/s12866-019-1635-z

Geng, X., Yanagida, K., Akwii, R. G., Choi, D., Chen, L., Ho, Y. C., … Srinivasan, R. S. (2020). S1PR1 regulates the quiescence of lymphatic vessels by inhibiting laminar shear stress-dependent VEGF-C signaling. JCI Insight5(14). https://doi.org/10.1172/jci.insight.137652

 

 

Back to Top