Reproducible Resistance of Endothelial Tissue
 For TEER Measurement of Epithelial and Endothelial Cell Cultures

Features

- The new EndOhm chamber upper mount is made of polycarbonate and unaffected by alcohol
- The glass chamber is easier to clean and more scratch resistant than the prior versions. The EndOhm is not recommended for incubator use due to risk of the glass cracking.
- Adjustable apical electrode height
- Crystal clear glass chamber allows visualization of apical electrode positioning
- New insert holder with 120° trisupports for three leg inserts
- Three sizes cover a range of well cup sizes from a variety of manufacturers
- Compatible with EVOM3 and EVOM ${ }^{\text {™ }}$ Manual

Benefits

- Stability and reproducibility superior to the STX2 electrodes to 1% tolerance
- Can be used with 6,12 or 24 well plates with removable inserts
- Symmetrical electrode pattern disperses test current uniformly
- Tri-leg supports offer mechanical stability and the membrane is held parallel to the electrodes
- Simple test procedure to verify electrode performance

Applications

- TEER measurement for removable culture cup systems using EVOM ${ }^{\text {TM }}$ Manual meters for endothelial and epithelial cell cultures

Using WPI's EVOM ${ }^{\text {™ }}$ TEER resistance meters, Endohm chambers provide reproducible resistance measurements of endothelial and epithelial monolayers in culture cups. Transfer cups from their culture wells to the Endohm chamber for measurement rather than using hand-held electrodes. The chamber and the cap each contain a pair of concentric electrodes: a voltage-sensing silver/silver chloride pellet in the center plus an annular current electrode. The

ENDOHMM-24 COMPATIBILITY CHART EVM-EL-03-01-03		
Corning	Millipore	Pore Size (
3407		Polycarbonate

ENDOHM-6 COMPATIBILITY CHART
EVM-EL-03-01-03

| | Membrane
 Diameter | Growth
 Surface Area
 $\left(\mathrm{cm}^{2}\right)$ | Membrane
 Pore Size
 $(\mu \mathrm{m})$ |
| :--- | :--- | :---: | :---: | :---: |
| 3470 | (mm) Millipore | | |

[^0]ENDOHM-12 COMPATIBILITY CHART
EVM-EL-03-01-02

Corning Millipore		Membrane Diameter (mm)	Growth Surface Area (cm^{2})	Membrane Pore Size ($\mu \mathrm{m}$)
3401		12	1.12	0.4
3402	PITP01250	12	1.12	3.0
3403	PITT01250	12	1.12	3.0
3493		12	1.12	0.4
3494		12	1.12	3
3460	PIHT15R48* PET Insert	12	1.12	0.4
3462	PIRP15R48* PET Insert	12	1.12	1
	PISP15R48* PET Insert	12	1.12	3
	PIMP15R48* PET Insert	12	1.12	5
	PIEP30R48* PIEP15R48* PIEP15R48* PET Insert	12	1.12	8

Epithelial Volt/Ohm (TEER) Meter

Non-destructive measurement of epithelial monolayer confluence in 2D cell cultures

WPI's EVOM ${ }^{\text {TM }}$ Manual is the gold standard for delivering
stable and
repeatable Trans Epithelial Electrical Resistance (TEER) measurements. The EVOM ${ }^{\text {™ }}$ Manual qualitatively
measures cell
monolayer health and quantitatively measures cell confluence by determining an increase or a plateau in tissue resistance detected using our innovative EVOM™ technology. The EVOM ${ }^{\text {TM }}$ Manual produces a low AC current that avoids electrode metal deposits and is specially designed for the non-destructive testing of epithelial monolayer confluence in cell cultures. Additionally, resistance readings are unaffected by membrane capacitance or membrane voltage. WPI's state of the art $E V O M^{\top M}$ technology provides you with real time valuable feedback during experiment measurements.

[^0]: * Inserts with tri-leg supports

