DMF1000
Microprocessor Controlled Microforge

Serial No.____________________
ABOUT THIS MANUAL

The following symbols are used in this guide:

⚠️ This symbol indicates a CAUTION. Cautions warn against actions that can cause damage to equipment. Please read these carefully.

⚠️ This symbol indicates a WARNING. Warnings alert you to actions that can cause personal injury or pose a physical threat. Please read these carefully.

NOTES and TIPS contain helpful information.

Fig. 1—DMF1000 System with optional foot switch
INTRODUCTION

The DMF1000 is an advanced microprocessor-controlled microforge for fabricating a variety of glass pipettes and other related tools, including those for in vitro fertilization. It can reliably duplicate a large variety of fabrication procedures such as carbon fiber electrode sealing, contact stretching to sharpen large bore pipettes and tip reduction of both small and large bore pipettes. IVF pipette tip ends can be bent and various tip ends can be formed using glass rod. All sizes can be fire polished from 0.5μm patch clamp pipettes to 100μm large bore pipettes. The built-in air pressure regulator is used for the forming of patch clamp pipettes, calibrating pipette tip size, and performing pressure injections. After a particular procedure is perfected, the parameters can be stored so that the conditions can be precisely duplicated. This permits both consistent fire polishing and precise pressure injection. Up to ten different programs can be stored and recalled for use at a later time.

In addition to the digital microforge controller, the DMF1000 system also comes with a microscope, reticle and a 40X objective with a 3mm long working distance. The small filament can forge tips less than 0.5μm, and the large filament makes it easy to forge and break large bore pipette tips. An injection tip holder is included for calibrating pipette tip size and performing pressure injection.

The complete DMF1000-1 system includes both the microforge and matched microscope (WPI #W30S); the DMF1000-M is the microforge only.

CAUTION: The Microforge Control Unit (power) and the heating filaments have been carefully matched to provide rapid filament response at optimum heat intensity. Use of either of these components with alternate power units or heating filaments may result in severe damage to any or all of these components.

Parts List

After unpacking, verify that there is no visible damage to the instrument. Verify that all items are included:

DMF1000-1/2 Complete Microforge 110V/220V (includes microscope):

(1) W30S Microscope (See W30S Instruction Manual included for set-up, assembly and operating instructions.)

(1) DMF1000 Microforge (See parts list below.)

DMF1000-M1/M2 Microforge 110V/220V (microscope not included):

(1) DMF1000 Microforge Control Unit

(1) Man-DMF1000 DMF1000 Instruction Manual

(1) DMF-1000 Start-Up Kit, including:

(1) 3354 1/4” NPT Air tank fitting

(1) 4763 0.25” OD Nylon tubing, Air input, 10’

(1) 5430-ALL PicoNozzle Kit

(1) 75040 Heating filament connecting cable

(1) 75050 Lucite and glass pipette holder

(1) 75090 Filament Adjustment Assembly
(1) **503513** Eyepiece with Linear Reticle
(1) **800003** 3/16 hex wrench
(1) **800292** 40X long-working distance objective
(1) **MF200-H4** H4 Heating Filament
(1) **DMF100-H5** H5 Heating Filament
(1) **300497** Spacer Ring for mounting on the 10X objective
(1) **75027** Spacer Ring for mounting on the 10X objective with 21mm OD

NOTE: The spacer ring (WPI #**300497**) may not be necessary for objectives with larger outside diameters. It is use with objectives smaller than 23.0mm.

Unpacking

Upon receipt of this instrument, make a thorough inspection of the contents and check for possible damage. Missing cartons or obvious damage to cartons should be noted on the delivery receipt before signing. Concealed damage should be reported at once to the carrier and an inspection requested. Please read the section entitled “Claims and Returns” on page 31 of this manual. Please contact WPI Customer Service if any parts are missing at 941-371-1003 or customerservice@wpiinc.com.

Returns: Do not return any goods to WPI without obtaining prior approval (RMA # required) and instructions from WPI’s Returns Department. Goods returned (unauthorized) by collect freight may be refused. If a return shipment is necessary, use the original container, if possible. If the original container is not available, use a suitable substitute that is rigid and of adequate size. Wrap the instrument in paper or plastic surrounded with at least 100mm (four inches) of shock absorbing material. For further details, please read the section entitled “Claims and Returns” on page 31 of this manual.

Fig. 2—DMF1000 System
INSTRUMENT DESCRIPTION

The complete DMF1000-1 (110V) and DMF1000-2 (220V) systems include both the Microforge and matched microscope (WPI Model W30S); the MF200–M1 (110V) and MF200-M2 (220V) include the Microforge only.

Optics

The **DMF1000** includes a 40X long-working distance (LWD) objective. This LWD objective is one of the most powerful currently available on any commercially produced microforge. Its 40X magnification is essential when polishing pipettes as small as half a micron (0.5µm) in diameter. A linear eyepiece reticle is provided with this system for measuring pipette tip dimensions. An optional angular reticle is available. See page 26 for details. Optional accessories (including a 25X LWD objective for the W30S microscope) further expand the **DMF1000** system functionality.

Positioning and Focus

Finding and moving the pipette tip under the microscope objective is simple. With a conventional microforge, it is difficult and time-consuming to position both the heating filament and pipette in the viewing area using independent micromanipulators. A unique feature of the **DMF1000** is the heating filament, inserted into the Filament Adjustment Assembly, which is directly attached to the microscope’s objective and (using the horizontal and vertical adjustment knobs of the assembly) can be easily maneuvered to any position within the viewing area. Once the correct focus is obtained, the filament will remain fixed and within focus, and attention can be turned towards positioning the pipette that rests on the microscope stage. The X-Y-Z movements of the microscope stage adjustment controls its position relative to the heating filament. This design makes the positioning and microforging of pipettes extremely easy. The stage of the **W30S** microscope has a high quality rail that ensures precise, smooth and stable control of the pipette’s movement. The **DMF1000** system configuration eliminates the need and expense of an additional micromanipulator to control pipette movement.

![Filament Adjustment Assembly](image-url)

Fig. 3— Filament Adjustment Assembly
Heating Filaments

Low heat capacity and low thermal expansion of the filaments are key design features of the DMF1000 Microforge. The low heat capacity of the filament allows it to reach fire-polishing temperatures without excessive heat. This permits the pipette tip to be brought close to the filament during polishing without fear of collapsing the pipette tip and eliminates the need for an auxiliary air cooling system. The low thermal expansion characteristic of the filament ensures minimal displacement of the filament during heating. This feature takes much of the guesswork out of tip placement in relation to the filament. Two functionally distinct heating filaments are provided to meet diverse application needs.

<table>
<thead>
<tr>
<th>Filament</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>H5</td>
<td>Large Gauge: This filament can be formed into a U, bent upward (reformed) for fabrication of pipettes and air forming of patch pipettes. Reforming the filament can result in a greater heated surface area to present to the pipette tip.</td>
</tr>
<tr>
<td>H4</td>
<td>Small gauge: for polishing patch clamp pipettes.</td>
</tr>
</tbody>
</table>

CAUTION: Do NOT change the heating filament while the Heat Timer is running.

CAUTION: Since working distance of the 40X LWD objective is only 3mm, the objective lens may be damaged by prolonged exposure to the heat produced by the heating filament. If, for example, the heat is set to 99%, the large filament should only be used in short bursts. For longer exposure times, lower heat settings should be used.

Microscope

The microforge has been matched with WPI research-grade microscope model W30S to provide an uncomplicated and complete system with excellent performance. The Filament Adjustment Assembly supplied with the microforge has been designed to fit both the 40X LWD objective (included) and the optional 25X LWD objective for the W30S microscope. The Filament Adjustment Assembly fits most other microscopes with a focal length of 160mm. The optional Filament Adjustment Assembly for the 10X objective is, however, designed specifically for the W30S 10X objective.

Control Unit

The DMF1000 Control Unit (Fig. 4) supplies power to the heating filament. The Control Unit’s output power is electrically stable and reproducible. Fluctuations in the mains voltage input will not affect the output to the filament. This ensures the same polishing
results day to day at the same settings. The unit senses which filament is used and automatically adjusts the heat output.

Initialization

After initialization, the settings stored in memory location 0 are displayed, and the heat and timer displays illuminate, indicating that the unit is powered up.

When any of the controller’s buttons are pushed and released, a “beep” indicates the operation has begun. If a button is pushed and a function cannot start, four “beeps” indicate that a button was pushed in error. If the filament breaks or burns out, there will be four “beeps” and the heat reading flashes ten times. The audible alarm may be turned off by pressing the RUN button any time during the initialization period.

Optional Foot Switch

An optional foot switch (WPI #13142) is available for complex fire polishing. Use of the optional foot switch leaves the hands free to move the pipette and control the variable heat adjustment on the Control Unit.

Control Unit Functions

- **RUN/MEM** — This button executes all the functions and settings on the microforge. When in Auto or Manual mode, it turns on the heater and starts the timer. In the Pressure mode, it turns on the air and start the timer. It also stores and recalls programs. The Heat On light illuminates when the heater starts to heat. If there is an open circuit in the heating filament system, the light does not illuminate.

- **TIME [sec]** — The unit has two timer modes of operation, Auto and Manual. In the manual mode the heat timer starts at zero and count up when the RUN/MEM button is pushed. After the desired heating time is established, push the TIME [sec] button to set the unit to Auto mode. The timer reading remains at the time established in Manual mode. When the RUN/MEM button is pressed, the counter counts down from the high setting to zero, a long “beep” sounds, and then the unit shuts off.

Fig. 4—Microforge Control Unit

The timer display shows seconds from zero up to a maximum of 360 (six minutes). The left arrow
next to the timer readout moves the decimal point to the left, and the right arrow \Rightarrow moves it to the right. The up \uparrow and down \downarrow arrows reset the time up or down. This allows for minor adjustments to the time when in Auto mode. This control also sets air output time.

- **MODE** — The unit has two modes of operation: Heat and Pressure. The Mode button switches the lower readout from heat reading in % to pressure reading in PSI. If left in Pressure mode, pressure injections can be made (see “Using DMF1000 as a Microinjector” on page 22) and the size of a pipette can be calibrated (see “Measuring Pipette Tip ID with the DMF1000” on page 24).
 - The **heat display** reads from 0 to 99.9%. The factory set maximum heat is hot. The filament glows cherry red when set at 99.9%. DO NOT use this setting for long periods of time. To prolong filament life, the best setting for heat is just hot enough to melt the glass. In most cases, microforging is accomplished without seeing the filament change color.
 - The **air pressure display** can be adjusted from 0 to 60 PSI with the control knob found on the back of the unit (Fig. 5). The lower window displays the current pressure in PSI when the unit is set to Pressure mode.

- **STORE** — When the STORE button is pressed, the lower display window displays the memory number. Use the arrow buttons next to the window to choose the desired memory location (0 through 9). Press the RUN/MEM button to store the current parameters to that memory location. It is a good idea to reserve memory 0 for the last program used since this is the memory location selected when the unit is first turned on.

- **RECALL** — When the RECALL button is pressed, the upper window displays the contents of memory location 0. Use the arrows next to the heat display window to choose the desired memory location (0–9), then press RUN/MEM to recall the parameters stored in the selected memory location.

Fig. 5—DMF1000 rear panel
OPERATING INSTRUCTIONS

Setting up the DMF1000

To set up the DMF1000, mount the objective and the Filament Adjustment Assembly to the microscope. Assemble the Pipette Holder. Position the micropipette holder on the microscope stage. Finally, install the heating filament.

![Image of a microscope](image)

Fig. 6—Slide the Spacing Ring (if used) over the objective tip

Mounting the Objective to the Microscope

1. Mount the objective to an available position on the microscope.
2. Lower the microscope stage as far it will go.
3. When using the 10X LWD, if it’s needed, slide the Spacer Ring (WPI #300497) over the tip of the objective as shown in Figure 6. The Filament Adjustment Assembly slides over the Spacer Ring for a snug fit.

NOTE: The spacer ring (WPI #300497) may not be necessary for objectives with larger outside diameters. It is use with objectives smaller than 23.0mm. To determine if you need a spacer, measure the outside diameter of your objective and refer to the chart below.

<table>
<thead>
<tr>
<th>Outside Diameter of Objective</th>
<th>Spacer Required</th>
<th>Objectives Affected</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.0mm</td>
<td>WPI # 75027</td>
<td>Some 10X</td>
</tr>
<tr>
<td>22.0mm</td>
<td>WPI #300497</td>
<td>Some 10X</td>
</tr>
<tr>
<td>23.0mm</td>
<td>none</td>
<td>Some 10X</td>
</tr>
<tr>
<td>23.5mm</td>
<td>none</td>
<td>40X LWD</td>
</tr>
</tbody>
</table>
Mounting the Filament Adjustment Assembly to the Microscope

1. Using the 3/16 hex wrench provided, loosen the mounting screw on the Filament Adjustment Assembly to open the ring so that it will fit comfortably over the objective and the Spacing Ring. (Fig. 7.)

2. Swing the objective to an outside position. It should not pointed directly down. Mount the Filament Adjustment Assembly onto the objective by carefully placing the ring around the objective and then sliding it up until it stops.

3. While maintaining the Filament Adjustment Assembly in position on the objective, slowly swing the objective down into the viewing position. Once in place, position the horizontal adjustment slider to the left of the microscope objective and parallel to the long edge of the microscope stage. (Fig. 7.) With the 3/16 hex wrench, tighten the mounting screw on the ring to secure the Filament Adjustment Assembly to the objective.

![Image](image_url)

Fig. 7—Mounting screw and proper orientation of the filament adjustment assembly

CAUTION: Do not overtighten the mounting screw. Too much force can damage the objective.

NOTE: The filament clamp and base plate attached to the vertical filament adjustment is angled slightly inward. This is normal. Do not attempt to straighten it. This angle facilitates viewing of the filament under the microscope.

4. Hook up the lab air or nitrogen to the AIR IN port on the back of the Control Unit.

5. Plug the polyurethane air output tubing into the pipette holder of choice. The nylon air input tubing (WPI #4763) supplied is 10’ long. A common 1/4” NPT air tank fitting (WPI #3354) is also supplied.
Assembling the Pipette Holder

Two sets of micropipette holder assemblies are provided in the PicoNozzle Kit (WPI #5430-ALL). For fire polishing, coating and pressure forging, one holder should be assembled without the metal handle. For pipette tip diameter calibration and microinjection, the other holder should be assembled with the metal handle (Fig. 8).

Positioning the Micropipette Holder

Position the Pipette Holder on the microscope stage as if it were a slide. Orient the acrylic block of the pipette holder as shown in Figure 9.

Mounting the Heating Filament

1. Position the heating filament in the filament clamp and tighten the knob on the bottom of the filament holder.

2. Attach both of the microforge connecting cables to the filament by fitting the socket end of each cable into the filament plugs. The cables are interchangeable and can be used for either plug.

3. Take the free end of each cable and insert each into one of the two Filament Output receptacles located on the side of the Microforge Control Unit. Again, it
does not matter which cable is connected to each receptacle. The connecting cable wires from the Microforge Control Unit are not polarized, so reversing these cables will do no harm.

Basic Operations for Using the DMF1000

This section describes the final preparations and general instructions for using the DMF1000. Specific instructions are detailed for some of the DMF1000 common uses in “Applications” on page 14.

NOTE: Remember that (because of microscope optics) any object seen through the microscope objective is a reverse image of the object and will appear reversed in orientation. For example, the heating filament (attached to the left side of the objective) will appear through the microscope as coming from the right.

1. Turn on the power to the microscope.
2. Choose the desired filament. See “Heating Filaments” on page 5.
3. Mount and connect the heating filament. See “Mounting the Heating Filament” on page 10.
4. Bring the filament into focus:
 - Without using the microscope, adjust the position of the filament by moving it in or out and side to side until the filament wire is centered approximately 3mm below the objective.
 - Looking through the microscope, move the filament in the filament clamp until its shadow appears. Some vertical adjustment may also be required to bring the shadow into the field.
 - Using the Vertical Adjustment, bring the filament into clearer view. With the Horizontal Adjustment, position the end loop of the filament to the far right side of the visual field.
5. Power up the DMF1000 unit. To do this, connect the line cord to the power input jack on the Microforge Control Unit and the wall socket.
6. Set the power switch (located on the back of the Control Unit) to on. After initialization, the setting that had been stored in memory location 0 displays. The Heat and Timer displays illuminate, indicating that the unit is powered up.
 - **TIP:** To turn the sound off, press the RUN/MEM button during the initialization period.

CAUTION: Since the working distance of the 40X LWD objective is only 3mm, the objective lens may be damaged by prolonged exposure to the heat produced by the heating filaments. If, for example, the heat is set to 99%, the larger filament should only be used in short bursts. For longer exposure times, lower heat settings should be used.
7. Press the TIME button to set the unit in Manual mode. Pressing the RUN button sends current through the filament and turns on the Heat On lamp.

8. Set the Heat readout by pressing the Increase (up arrow)/Decrease (down arrow) buttons from setting 0–99.9%, varying the amount of power applied to the filament. An optional foot switch (WPI #13142) leaves the hands free to vary the filament heat intensity while positioning the pipette. Some microforging techniques require a two-handed approach.

9. With the power on and unit set at Manual, depress the RUN button several times at various heat settings to see the expansion of the filament loop and determine approximately where the pipette should be positioned in relation to it. With a higher heat setting, the filament expands farther.

10. Position the pipette:

Position the pipette by first adjusting the stage of the microscope down and away from the objective, to provide sufficient room for mounting the pipette safely on the pipette holder.

Place the pipette in the acrylic pipette holder (Fig. 10).

![Fig. 10—Acrylic micropipette holder](image)

Position the pipette using the horizontal adjustment on the microscope stage so that the pipette tip is slightly past the center of the objective.

Raise the stage until the filament is about 3 mm from the objective. (Fig. 10)

Slowly move the pipette back and forth, in and out, while looking through the microscope until the image of the pipette is observed.

Adjust the vertical position of the stage until the pipette is clearly visible and in focus.

Position the pipette tip in relation to the heating filament as required by the application.

11. Adjust the Filament Power and Heat Readout. The filament is auto-sensed by the unit so no settings need be changed when changing filament types. The Heat readout (0–99.9%) provides a range of power. Always begin with the readout at the low end of the range and increase the heat only as necessary and by small increments. The lowest power and heat setting that can be used to accomplish a
task should be used. Higher heat than necessary may shorten filament life, as well as increase the possibility of overheating the pipette tip.

CAUTION: It is not necessary to operate the unit at high power with the Heat dial set at 100 if the system is used properly. This can cause the filament to burn out prematurely.

NOTE: Whenever changing filaments, turn off the power. When switching power levels, always set the Heat dial to 0.

Programming Procedure

1. Turn on the Control Unit by setting the power switch (located on the back of the unit) to the on position. The settings stored in memory location 0 display.

 The first time the unit is turned on:
 - Both readouts display 000
 - TIME selection is Auto
 - MODE selection is Heat
 - Air On light is off
 - Heat On light is off

 Time display does not show a decimal point. With the timer set in this position the maximum amount of time that the unit can run is 360 seconds (6 minutes).
 - Pressing the left arrow moves the decimal point in the display to the left, and the maximum time for the counter is 99.9 seconds (1.66 minutes) before returning to 0 and starting over.
 - Pressing the left arrow another time moves the decimal point further left and the maximum time for the counter is 9.99 seconds before returning to 0 and starting over.

2. Select a filament. The small filament is better suited for microforging pipettes 1μm or less. The large filament should be used for larger pipette forging, forming and sizing.

2. Press the TIME button to select Manual mode.

3. Verify that the unit is in the Heat mode. If the pressure light is on, press the MODE button to switch the unit to Heat mode. If the Air On light is on, press the AIR button to turn the light out. The Heat On light is off.

4. Mount the pipette in its holder and position it focused in the field of view close to the filament, far enough so the filament’s expansion will not allow it to touch the tip.
TIP: Using the reticle, measure the distance between the tip and the filament. In order to get reproducible results with a tip of the same size, the new tip needs to be the same distance from the filament.

5. Using the up and down arrow keys above the Heat On light, set the heat to a low setting between 30 and 50. *Better control of the forging operation is accomplished by setting the heat low and letting the heater run longer*. This allows the operator to see the tip forming slowly and to stop the heating action at exactly the right time.

6. Press and hold down the RUN button to start the heating action. The time counter starts counting up from 0. Seen through the microscope, the pipette tip slowly starts to form a smooth surface. When the tip is formed, release the RUN button to stop the heater and its timer. If there wasn't enough heat to melt the glass, increase the heat a little or move the tip closer to the filament to start the melting action.

NOTE: If the heat is set too high the tip will form too fast and may be not useable. Move the tip away from the filament or lower the heat to let the tip form slower so the heat can be turned off at the right time.

7. If the tip that was just formed is acceptable, push the TIME button to select Auto mode. The unit is now programmed and the time readout is set at the same duration to polish another tip of the same size and profile.

8. Load another pipette the same size and profile, focused in the field of view. Position the new pipette at the same distance from the filament as the programmed pipette.

9. Press and release the RUN button. The heater turns on and the counter starts counting down to 0 and turns off the heater. The forming of the tip can be seen through the microscope. The newly formed tip is the same as the first tip.

TIP: If the forming of the tip appears to be going too far, a second push of the RUN button will stop the heating action. If this happens, the tip may have been placed closer to the filament than was the programmed tip.

Applications

Choice of filaments, power and heat settings for each application vary with the use. If the desired result is achieved, the choice of parameters is acceptable. Always use the least amount of heat possible in order to prolong the life of the filaments.

The distance that should be maintained between the filament and the pipette tip during microforging varies depending on the tip bore, filament, power, heat settings and application. With the exception of the applications in which a glass bead is formed on the filament, the tip should not come in contact with the filament. In general, it is best to begin with the tip at a safe distance from the filament and move toward it, as necessary.
The formation of a glass bead on the filament is required for certain applications. See “Microforming Beveled Injection Pipettes” on page 21. It is not required for the other applications described in this manual, however, a glass bead on the filament may be used for other applications, if desired.

Fire Polishing Patch Clamp Pipette or Standard Pipette Tip

1. Choose and install the desired filament. (See “Heating Filaments” on page 5.)

2. Turn on the Control Unit power and press TIME to select Manual mode. Press the RUN button and adjust the Heat readout from low to high with the arrows while observing the expansion of the filament under the microscope. A slight movement of the filament indicates that it has sufficient heat to provide excellent polishing results in most cases.

3. Place the pipette to be polished in the acrylic pipette holder. Adjust the microscope stage until the pipette is in position with sufficient distance to account for filament expansion (Fig. 11).

4. Press RUN/MEM and observe the expansion movement of the filament. Determine the appropriate Heat setting and then fine tune the position of the tip. Note the distance between the pipette and the filament. This is needed to reproduce an identical pipette. A minimal change in the shape of the filament typically yields good polishing results (Fig. 12).

5. Press RUN and polish the pipette to the desired degree.

6. Press the TIME button to select Auto mode. Place an identical pipette to the one just polished in the tip holder. Position the tip in the same place as the first tip and press the RUN/MEM button. The counter starts counting down to zero, and the pipette is polished the same as the first.

Fig. 11—Untreated tip (left)

Fig. 12—Fire polished tip (right)

NOTE: A red-hot filament is unnecessary and undesirable and will decrease the life of the filament. It also heats the tip too quickly, making it difficult to control the degree of polishing. In addition, a red-hot large filament could permanently damage the 40X objective.
Forming a Patch Clamp Pipette with Air

Another way to create a pipette that will seal with lower resistance is to increase the outside diameter of the tip end without changing the inside diameter opening size. This increases the seal surface area of the glass and creates a better seal for the patch pipette.

WARNING: ALWAYS WEAR SAFETY GLASSES DURING THIS PROCEDURE. NEVER POINT THE PIPETTE AT ANYONE. THE PIPETTE CAN BE FORCEFULLY SHOT OUT OF ITS HOLDER IF NOT TIGHTLY SECURED.

1. Create a pipette with an inside diameter (ID) opening of about 0.5 μm, and fire polish the tip end. See “Fire Polishing Patch Clamp Pipette or Standard Pipette Tip” on page 15.

2. Select the large filament and form a bent-up loop in the end (Fig. 13).

3. Mount the filament in the filament holder and position it.

4. Connect the polyurethane tubing to the air output line on the back of the Control Unit (Fig. 5). The other end of the polyurethane tubing must be connected to the barb of the acrylic body (Fig. 8). Be careful that the barb does not break when attaching or removing the tubing.

5. The metal handle must not be connected to the acrylic body. Before inserting the pipette into the acrylic body, place a gasket of the correct size in the metal cap.

 NOTE: The kit includes gaskets for pipette diameters of 1 mm (green), 1.2 mm (black), 1.5 mm (blue) and 1.65 mm (red).

6. Slide the pipette through the metal cap and gasket, then twist the metal cap to tighten it securely.

7. Mount the pipette on the stage-mounted acrylic pipette holder and lock it in place with the locking screw (Fig. 14).

Fig. 13— Filament reformed into bent up loop

Fig. 14— Stage-mounted acrylic pipette holder
8. Position the filament so the top of the looped end is in the field of view. Using the reticle, note the location of the inside edge of the filament. Move the filament, looped end up, closer to the objective until the looped end is out of view. This allows the pipette to be placed under the filament and still be in the field of view (Fig. 15).

Fig. 15—Position pipette under the loop

9. Adjust the location of the pipette so that it is in the field of view and the tip end is centered just past the inside edge of the filament. The placement of the pipette is important. If the tip end is too close to the filament its inside diameter (ID) size will be reduced a little when the tip is formed. If the tip end is too far away from the filament the end will not form properly.

10. Press the MODE button to set the unit to Pressure mode. Set the pressure to 30 or 40 PSI.

11. Press the MODE button to return the unit to Heat mode.

12. Press the AIR button to turn the air on.

13. Press the TIME button to select Manual mode.

14. Set the heat to 30 or 40%.

15. Press and hold the RUN button and observe the pipette end. A ball should start to form at the end of the pipette.

16. Release the RUN button when the desired tip is formed.

17. When the heat turns off, the air stays on for about five seconds. This delay is set at the factory and cannot be changed.

TIP: If the ball is too far back from the tip, the pipette can be salvaged by releasing the RUN button and resetting the tip a little closer to the filament’s inside edge. Wait until the air turns off, and then turn the air back on by pressing the AIR button on the instrument panel. Hold the RUN button down until the tip forms.
properly (Fig. 16). This procedure may be tried a few times before acceptable results are obtained.

Fig. 16—Properly formed tip

18. To form another tip the same size, place the unit in Auto mode and position the new pipette in the same place in relation to the filament as the newly formed tip was. Press the AIR button to turn the air on. Press and release the RUN button to start the timer counting down until the pipette is formed.

Coating a Single-Channel Patch Clamp Pipette

Coat the single-channel patch clamp pipette with Sylgard 184 before polishing. Prior coating ensures that Sylgard does not seal the tip of the glass after fire polishing. (A simple and effective coating method has been described by Dr. Li. See “References” on page 27.)

WARNING: ALWAYS WEAR SAFETY GLASSES DURING THIS PROCEDURE. NEVER POINT THE PIPETTE AT ANYONE. THE PIPETTE CAN BE FORCEFULLY SHOT OUT OF ITS HOLDER IF NOT TIGHTLY SECURED.

1. Assemble the pipette holder without the metal handle.
2. Briefly, fit the pipette into the acrylic body and connect the polyurethane tubing to the barb of the acrylic body and the air output line on the back of the Control Unit.
3. Press the MODE button to set to Pressure mode and use the air knob on the back of the unit to set the pressure slightly above 20 PSI.

 NOTE: Air is forced through the pipette at a pressure greater than 20 PSI (for a 0.5 μm ID pipette) in order to prevent the Sylgard from entering the pipette tip during the coating process.

4. After mixing the Sylgard, press the MODE button to return the unit to Heat mode.
5. Press the AIR button to turn the air on.
6. Dip the pipette tip into the coating and remove it.
7. With the low pressure air supply still applied, place the pipette tip over a heat gun for two seconds to cure the Sylgard.

The pipette is now coated and the tip is ready to be polished following the procedure for the whole cell patch clamp pipette. See “Fire Polishing Patch Clamp Pipette or Standard Pipette Tip” on page 15.

TIP: Practice with a scrap pipette to determine the heat setting and curing procedure.
Tip Size Reduction

Tip size reduction creates a holding pipette by rounding the tip ends and reducing the length of the pipette tip (Fig. 17).

1. Choose and install the desired filament. See “Heating Filaments” on page 5.
2. Turn on the Control Unit power.

3. Press the TIME button to select Manual mode.
4. Press the RUN button to see how hot the filament gets.
5. Increase the heat until the filament just starts to glow red.
6. Place the pipette to be reduced in the pipette holder. Adjust the microscope stage until the pipette is in position with sufficient distance to account for filament expansion. Note the distance between the pipette and the filament, because this is needed to reproduce an identical pipette.
7. Turn on the heat by pressing the RUN button and observe the melting of the tip. Maintain the heat until the desired opening size is obtained.

TIP: If the process is too slow, move the tip closer to the filament. (It is better to do this operation slowly in stages, in order to avoid making the tip too small.)

Fire Polishing Large Bore Pipettes

To fire polish large bore tips (100–200μm), the H5 filament can be shaped or re-formed to be slightly larger than the pipette tip (Fig. 18.) This provides an increase in the heated surface area presented to the tip with a resulting increase in the heat directed to the large bore tip. This is necessary to melt the thicker glass of a large bore pipette. Larger bore tips generally require the use of the 10X objective. Under some circumstance, it may be possible to

Fig. 17—Tip size reduction

Fig. 18—Large bore pipette in re-shaped filament

World Precision Instruments
use the 25X LWD objective. After re-forming the filament, proceed to microforge as described in “Fire Polishing Patch Clamp Pipette or Standard Pipette Tip” on page 15.

Tip Reduction of Large Bore Pipettes

![Image of reshaped filament]

Fig. 19—Tip of large bore pipette in reshaped filament

The re-formed H5 filament described in “Fire Polishing Large Bore Pipettes” can also be used for tip size reduction of large bore pipettes. To reshape the tip end and reduce its size, re-form the filament so that the tip will fit inside the filament (Fig. 19), and then proceed to microforge as described in “Tip Size Reduction” on page 19.

Breaking and Microforging, Injection Pipettes

A variety of pipette configurations, including those for *in vitro* fertilization and patch pipettes, are hard to pull reproducibly in quantity. Pulling a number of pipettes a little longer than the general size and breaking them using the DMF1000 can be much faster and more exact. All pipette breaking, sealed end probes and other tools are formed using the H5 filament.

1. Mount the H5 filament in the filament holder and bring the filament into focus. The filament does not need a glass bead melted to it.
2. Turn on the power to the Control Unit and press the TIME button to select Auto mode.
3. Verify that the heat display light is on.
4. Adjust the Heat readout from 30–50% depending on the outside diameter of the glass where the break point is to be made. **NOTE**: A 10μm tip will break best at a heat setting around 50%.
5. Place the pipette to be broken in the acrylic pipette holder. Look at a point far away from the break point toward the tip end and watch the focus drift off a little. This loss of focus shows that the filament has moved the tip. Position the pipette tip so the filament is just touching the glass.
6. Set the time readout to three seconds.
7. Press the RUN button and the pipette should break off clean leaving the broken off part attached to the filament. **NOTE**: If the glass did not break off, the heat may be to low or the glass is not touching the filament. If the glass did break off but the tip is somewhat bent, the heat is set too high or the pipette is pressed to the filament too hard.
8. See “Fire Polishing Patch Clamp Pipette or Standard Pipette Tip” on page 15 to polish the broken tip.
Microforging Beveled Injection Pipettes

Frequently, a beveled large bore pipette is not sharp enough to penetrate a cell without causing damage to the surrounding area. With the **DMF1000** and the **H5** heating filament, a sharp point can be formed on a beveled tip to assist in the penetration of the cell with minimal damage, using a two step process. First form a glass bead on the filament, and then sharpen the beveled edge of the pipette.

Step 1: Form Glass Bead on the Filament

First form a glass bead around the filament by coating the midpoint of the filament with a small amount of glass.

1. Press the TIME button to select Manual mode.
2. Position a small scrap pipette in the pipette holder.
3. Adjust the microscope stage until the pipette is in position to allow the tip to touch the filament during expansion.
4. Press the RUN button on and off to set the heat readout so the filament starts to glow red. Press the RUN button and coat the center of the filament with glass until a bead about twice the diameter of the filament is formed.
5. Release the RUN button. Remove the scrap pipette from the holder.

Step 2: Sharpen the Beveled Edge of the Pipette

1. Press the TIME button to select Manual mode.
2. Place the beveled pipette in the pipette holder. With the pipette tip far from the heat, press the RUN button on and off, and adjust the heat until the glass bead becomes molten (Fig. 20). Observe how far the filament has expanded.

![Fig. 20 — Glass bead formed on filament](image)

3. With heat off, move the tip close to the point that the filament expanded to (Fig. 21).

![Fig. 21 — Pipette tip close to glass bead](image)
4. Press the RUN button. The filament expands, touching the tip of the beveled glass. As glass the bead becomes molten and the beveled tip makes contact with the bead, quickly pull the tip away and simultaneously release the RUN button to turn off the heat. (Fig. 22).

![Fig. 22—Filament expands and contacts the tip](image)

5. The resulting tip (Fig. 23) has a very sharp point for clean cell penetration.

![Fig. 23—Pipette has a sharp tip](image)

Using DMF1000 as a Microinjector

DMF1000 can also be used as a pneumatic pico and femto-liter injector. It offers a digital pressure readout and memory features that out-performs dedicated injection units. In addition, the high-speed solenoid used in the controller provides excellent volume resolution.

1. Turn on the power to the Control Unit. After a 30-second initialization period, the setting stored in memory location 0 displays.
2. The Heat/Pressure readouts display a value. Press the MODE button to select Pressure mode. The Pressure \([\text{PSI}]\) light illuminates.
3. Adjust the pressure reading by turning the regulator knob on the back of the unit to the desired pressure.
4. Connect the polyurethane tubing to the air output line on the back of the Control Unit and the barb of the acrylic body (Fig. 8).
5. Carefully attach the metal handle to the acrylic body.

![Fig. 24—Pipette with metal handle](image)
6. Mount the metal handle onto a micromanipulator.

7. Slide the pipette through the metal cap and gasket and tighten the metal cap. Make sure the pipette is tight.

WARNING: ALWAYS WEAR SAFETY GLASSES DURING THIS PROCEDURE. NEVER POINT THE PIPETTE AT ANYONE. THE PIPETTE CAN BE FORCEFULLY SHOT OUT OF ITS HOLDER IF NOT TIGHTLY SECURED.

NOTE: The gasket initially installed in the holder is for a 1mm outside diameter (OD) glass capillary. Gaskets for 1.2, 1.5 and 1.65mm glass capillaries are also supplied. When using other sizes of glass capillaries, change the gasket to the right size before installing the pipette.

8. Press the TIME button to select Manual mode. Time is displayed in seconds from zero up to a maximum of 360 (6 minutes).

 TIP: Press the left or right arrow next to the time display to move the decimal point to the left or right. When the timer is set to maximum time, the decimal point is not displayed. The up and down arrows next to the time display increase or decrease the time when in Auto mode, allowing for minor time adjustments.

9. In Manual mode, the RUN button turns on the output air line to the pipette and starts the timer. The sample that was loaded in the pipette is disbursed and may be stopped at any time by releasing the RUN button.

10. If the manual inject run was satisfactory, press the TIME button to select Auto mode. To make another injection, use the same pipette or one the same size and do not change the air pressure. Press and release the RUN button. The pressure turns on, and the counter counts down to 0. This injection time and pressure are the same as the injection time and pressure in the Manual mode.

11. To save this program, press the STORE button and select a memory location from 1 to 9 by pressing the arrow buttons next to the heat/pressure display. Then, press RUN. To recall the program at a later time, press RECALL and select the number under which it was stored. The program displays on the readouts. Since the air pressure is a manual setting, and the display shows the present pressure, the stored pressure reading blinks on the display ten times before the display begins to show the line pressure. Be sure to set the air pressure to stored number shown on the blinking display.

Notes for Microinjection

- Injection volume is linearly proportional to the pressure and time duration. By changing the injection pressure or time duration, different volume of injection can be achieved. Injection volume can be calibrated by injecting the liquid into a petri dish that contains hydrated mineral oil and measuring the liquid drop size to calculate the volume.

- **DFM1000** does not have the balance pressure feature to reduce the capillary action. When the liquid meniscus is in the chunk section of the pipette, the
capillary pressure is too small to balance with any precision regulator on the market. When the liquid meniscus is in the taper section of the pipette, the capillary pressure is always changing as the liquid/air interface moves. The best way to reduce the effect of capillary action is to remove it completely by silanizing the pipette with silane to form a hydrophobic surface.

- Although DMF1000 uses the fastest solenoid on the market, the system has a finite response time. The system capacity and the restriction of the solenoid orifice limit the rising phase of the injection pulse to the 40-80ms range. To get the best accuracy for injection volume, set the injection time longer than 0.1 second.

Measuring Pipette Tip ID with the DMF1000

With a precision pressure regulator and a precision digital monometer, the DMF1000 can be used to measure or calibrate the micropipette inner diameter (ID) based on the bubbling threshold pressure. By measuring the threshold of the bubbling pressure in methanol, the tip inner diameter can be precisely determined with the Laplace equation. For a pipette tip that has inner diameter less than 10μm, the bubbling threshold method is the best non-destructive way to measure the inner diameter.

Measuring Procedure

1. Connect the polyurethane tubing of the calibration pipette holder to the DMF1000.
2. Mount the metal handle of the calibration pipette holder on to a micromanipulator.
3. Place a small container filled with methanol under a stereo microscope.

 WARNING: ALWAYS WEAR SAFETY GLASSES DURING THIS PROCEDURE. NEVER POINT THE PIPETTE AT ANYONE. THE PIPETTE CAN BE FORCEFULLY SHOT OUT OF ITS HOLDER IF NOT TIGHTLY SECURED.

4. Slide the pipette through the metal cap and gasket, and tighten the metal cap. Make sure the pipette is tight. The higher pressure needed to measure pipettes under 0.5μm could push the pipette out of the holder if it is not secured tightly.

 NOTE: The gasket initially installed in the holder is for a 1mm outside diameter (OD) glass capillary. Gaskets for 1.2, 1.5 and 1.65mm glass capillaries are also supplied. When using other sizes of glass capillaries, change the gasket to the right size before installing the pipette.
5. Press the MODE button to select Pressure mode.
6. Adjusting the regulator in the back of the instrument so that the output pressure is slightly higher than the predicted threshold pressure of the tip.
7. Press the AIR button to turn on the air.
8. Adjust the micromanipulator to move the pipette tip slowly into the methanol solution in the petri dish.

9. Air bubbles coming out of the pipette tip can be seen through the microscope. Adjust the regulator until the bubbles just stop coming out. The pressure reading on the DFM1000 is the threshold pressure for the pipette.

10. Using Laplace's equation, the tip's inner diameter can be calculated from the threshold pressure.

 Laplace equation: \(P = \frac{4s}{D} \).

 - \(P = \) threshold pressure
 - \(s = \) surface tension of the gas/liquid interface
 - \(D = \) inner diameter of the pipette

 If pressure \(P \) is measured in PSI, and inner diameter \(D \) is measured in microns, then:

 - For 100% methanol at 25°C, \(s \) is equal to 3.22 PSI•µ.
 - For water at 25°C, \(s \) is equal to 10.44 PSI•µ.

Notes

- Always use fresh methanol for the calibration. Water vapor in the air is slowly absorbed by methanol. This changes the surface tension of the methanol and affects the accuracy of the measurement.

- At least three publications detail the accuracy of the bubbling threshold pressure method. See “References” on page 27 (3, 4, 5). In Hagag's paper, a correction constant of 0.793 was introduced to the equation to correct the experimental error. There was a small mistake for the last equation; the numerator also has to be raised to the 1.01\(^{th} \) power.

\[
D = \frac{0.793 \cdot 4 \cdot S^{1.01}}{P^{1.01}}
\]

In Bowman’s paper, no correction constant was used. The calculated result is about 2-7% larger than that of scanning electron microscopy.

- Pipette tips larger than 10µm inside diameter (ID) can be determined by measuring the outside diameter (OD) of the tip with a microscope that has a calibrated reticle in the eyepiece. Since the magnification of most microscope objectives is not necessarily the exact integer number as labeled on it, it needs to be calibrated with a precision stage micrometer. When a pipette tip is formed, the OD/ID ratio remains the same as that of the original tubing used. For example, if a 1.00mm OD, 0.75mm ID glass capillary is used to for making a microinjection pipette, and the OD of the pipette tip is measured to be 10µm, then the ID of the pipette tip is 7.5µm.
INSTRUMENT MAINTENANCE

The requirements for the maintenance and storage of the DMF1000 are minimal. Care should be taken to protect the filaments. Store them in their original container when not in use. In general, it is advisable to keep the DMF1000 in an area with minimal dust and particulates as would be appropriate for any microscope or similar apparatus.

ACCESSORIES

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>300497</td>
<td>Delrin Spacing Ring for 10X objective (0.86")</td>
</tr>
<tr>
<td>75027</td>
<td>Delrin Spacing Ring for 21mm 10X objective</td>
</tr>
<tr>
<td>500292</td>
<td>15X Eyepieces (pair)</td>
</tr>
<tr>
<td>13142</td>
<td>MF200 optional foot switch</td>
</tr>
<tr>
<td>500329</td>
<td>25X Long-Working Distance objective (5mm): fits most microscopes with a 160 mm Focal Length</td>
</tr>
</tbody>
</table>

*Optional angular reticle (19mm) is available. Contact Technical support for details at 941-371-1003 or technicalsupport@wpiinc.com.

Fig. 25—Optional Angular eyepiece reticle
SPECIFICATIONS

DMF1000

POWER REQUIREMENTS ... 100-240VAC 50/60Hz
FILAMENTS (2) .. \textbf{H4, H5}
POWER CONTROL .. Push button or Optional Foot Switch
TIMER RANGE ... 0-6 minutes
TIMER RESOLUTION ... 10 ms
HEATING RANGE .. 0-99%
MAX. AIR INPUT ... 100PSI
MIN. AIR NEEDED .. 30PSI (for forging)
AIR OPERATING RANGE ... 0.1PSI
CONTROL UNIT DIMENSIONS ... 25 x 20 x 12cm (9.8 x 7.9 x 4.7”)
SHIPPING WEIGHT .. 3kg (7lb.)

Microscope

OBJECTIVE ... 40X Long-Working Distance (3 mm)
EYEPICE .. 10X (pair)
RETICLE .. (10X eyepiece for W30S only) Linear, 100 div/10: 0-90° angle at 5°/division (Optional)
SHIPPING WEIGHT .. 7.3kg (16lb.)

For W30S microscope specifications, refer to the W30S Instruction Manual.

REFERENCES

APPENDIX A: MICROSCOPE OBJECTIVE INFORMATION

DIN Plan Achromat (160mm) Information

<table>
<thead>
<tr>
<th>Magnification</th>
<th>N.A.</th>
<th>Approx. Field of View</th>
<th>Approx. Working Distance</th>
<th>Body Diameter</th>
<th>Approx. Depth of Focus</th>
</tr>
</thead>
<tbody>
<tr>
<td>4X</td>
<td>0.10</td>
<td>4.5mm</td>
<td>17mm</td>
<td>20mm</td>
<td>~90μm</td>
</tr>
<tr>
<td>10X</td>
<td>0.25</td>
<td>1.8mm</td>
<td>2mm</td>
<td>20-23mm</td>
<td>~15μm</td>
</tr>
<tr>
<td>25X LWD</td>
<td>0.50</td>
<td>0.72mm</td>
<td>5mm</td>
<td>23.4mm</td>
<td>~5μm</td>
</tr>
<tr>
<td>40X</td>
<td>0.65</td>
<td>0.45mm</td>
<td>0.65mm</td>
<td>NA</td>
<td>~20μm</td>
</tr>
<tr>
<td>40X LWD</td>
<td>0.65</td>
<td>0.45mm</td>
<td>3mm</td>
<td>23.4mm</td>
<td>~20μm</td>
</tr>
<tr>
<td>100X (oil)</td>
<td>1.25</td>
<td>0.18mm</td>
<td>contact</td>
<td>NA</td>
<td><1μm</td>
</tr>
</tbody>
</table>
INDEX

A
accessories 31
acrylic pipette holder 15
Air On 16
air output 11
air pressure display 9
applications 18

B
base plate 11
breaking injection pipette
24
bubbling threshold 30
burn out 15

C
changing filaments 15
coating patch clamp 22
control unit 7

D
digital monometer 29

F
femto-liter injector 26
Filament Adjustment
Assembly 4, 5, 7
mounting 10
filament clamp 11, 13
Filament Output
receptacles 13
fire polishing 18
large bore pipettes 23
focal length 7

G
glass bead 18, 25

H
H2 6
H5 6
heat capacity 6
heat display 9
heat filament 6
changing 15
Horizontal Adjustment 14

I
injection pipette 24
injection Pipette 25
inner diameter 29
in vitro fertilization 2, 24

L
Laplace 30
large bore pipettes 24
LWD 7

M
maintenance 31
MEM 8
metal handle 20
microinjection 26
micropipette holder 12
positioning 12
MODE 8
mounting screw 11
mount the objective 10

O
objective 10
optics 5

P
parts list 3
patch clamp 18, 19
pipette holder 12, 15
pneumatic pico injector

R
Recall 9
references 33
reticle 16, 20
reticle, angular 31
returns 4
reverse image 13
RUN/MEM 8

S
safety glasses 19, 22, 27,
29
sharpen beveled edge 25
sharp point 26
specifications 32
storage 31
STORE 9
Sylgard 22

T
TIME 8
timer display 8
tip size reduction 23

U
unpacking 4

V
Vertical Adjustment 14

W
W30S 3, 4, 5, 6, 7, 32
DECLARATION OF CONFORMITY

WORLD PRECISION INSTRUMENTS, LLC.
175 Sarasota Center Boulevard
Sarasota, FL 34240-9258 USA
Telephone: (941) 371-1003 Fax: (941) 377-5428
E-mail: wpi@wpiinc.com

We: World Precision Instruments, Inc.
175 Sarasota Center Boulevard
Sarasota, FL 34240-9258 USA

As the manufacture/distributor of the apparatus listed, declare under sole responsibility that the product(s):
DMF1000

To which this declaration relates is/are in conformity with the following standards or other normative documents:

Safety:
EN 61010-1:2010

EMC:
EN61326-2-2:2013, EN 61326-1:2013
EN 61000-3-2:2014, EN 61000-3-3:2013

Issued on: July 20, 2018

[Signature]
Quality Department Manager

F-QC-006 Rev B
WARRANTY

WPI (World Precision Instruments, Inc.) warrants to the original purchaser that this equipment, including its components and parts, shall be free from defects in material and workmanship for a period of 30 days* from the date of receipt. WPI’s obligation under this warranty shall be limited to repair or replacement, at WPI’s option, of the equipment or defective components or parts upon receipt thereof f.o.b. WPI, Sarasota, Florida U.S.A. Return of a repaired instrument shall be f.o.b. Sarasota.

The above warranty is contingent upon normal usage and does not cover products which have been modified without WPI’s approval or which have been subjected to unusual physical or electrical stress or on which the original identification marks have been removed or altered. The above warranty will not apply if adjustment, repair or parts replacement is required because of accident, neglect, misuse, failure of electric power, air conditioning, humidity control, or causes other than normal and ordinary usage.

To the extent that any of its equipment is furnished by a manufacturer other than WPI, the foregoing warranty shall be applicable only to the extent of the warranty furnished by such other manufacturer. This warranty will not apply to appearance terms, such as knobs, handles, dials or the like.

WPI makes no warranty of any kind, express or implied or statutory, including without limitation any warranties of merchantability and/or fitness for a particular purpose. WPI shall not be liable for any damages, whether direct, indirect, special or consequential arising from a failure of this product to operate in the manner desired by the user. WPI shall not be liable for any damage to data or property which may be caused directly or indirectly by use of this product.

Claims and Returns

Inspect all shipments upon receipt. Missing cartons or obvious damage to cartons should be noted on the delivery receipt before signing. Concealed loss or damage should be reported at once to the carrier and an inspection requested. All claims for shortage or damage must be made within ten (10) days after receipt of shipment. Claims for lost shipments must be made within thirty (30) days of receipt of invoice or other notification of shipment. Please save damaged or pilfered cartons until claim is settled. In some instances, photographic documentation may be required. Some items are time-sensitive; WPI assumes no extended warranty or any liability for use beyond the date specified on the container.

Do not return any goods to us without obtaining prior approval and instructions from our Returns Department. Goods returned (unauthorized) by collect freight may be refused. Goods accepted for restocking will be exchanged or credited to your WPI account. Goods returned which were ordered by customers in error are subject to a 25% restocking charge. Equipment which was built as a special order cannot be returned.

Repairs

Contact our Customer Service Department for assistance in the repair of apparatus. Do not return goods until instructions have been received. Returned items must be securely packed to prevent further damage in transit. The Customer is responsible for paying shipping expenses, including adequate insurance on all items returned for repairs. Identification of the item(s) by model number, name, as well as complete description of the difficulties experienced should be written on the repair purchase order and on a tag attached to the item.

* Electrodes, batteries and other consumable parts are warranted for 30 days only from the date on which the customer receives these items.
USA
International Trade Center, 175 Sarasota Center Blvd., Sarasota FL 34240-9258
Tel: 941-371-1003 • Fax: 941-377-5428 • E-mail: sales@wpiinc.com

UK
1 Hunting Gate, Hitchin, Hertfordshire SG4 0TJ
Tel: 44 (0)1462 424700 • Fax: 44 (0)1462 424701 • E-mail: wpiuk@wpi-europe.com

Germany
Saarstraße 23, D-61169 Friedberg (Hesson), Germany
Tel: +49 (0)6031 1602171 • Fax: +49 (0)6031 1602180 • E-mail: wpide@wpi-europe.com

China & Hong Kong
WPI Shanghai Trading Co., Ltd.
Rm 25e, No8 Dongfang Rd., Pudong District, Shanghai, 200120 PR China
Tel: +86 21 6888 5517 • E-mail: chin sales@china.wpiinc.com

Brazil
Av. Conselheiro Nébias, 756 sala 2611, Santos-CEP: 11045-002, São Paulo Brazil Tel: (013) 406-29703 • E-mail: info@brazil.wpiinc.com

Internet
www.wpiinc.com • www.wpi-europe.com • www.wpiinc.cn • www.wpibrasil.com.br