Liquid Waveguide Capillary Cell, 10 cm pathlength

Order code

Long pathlengths for small sample volumes

  • 10 cm pathlength, 0.31 mL internal volume
  • 50–500 fold sensitivity improvement in comparison to 1cm cuvette
  • 2 mm ID for unfiltered liquid samples
  • SMA 905 fiber optic connections
  • Wavelength Range: 230-720nm with MilliPore water
  • Extends into the NIR by switching water to methanol


  • Adapts to most fiber optic detection systems
  • 20 years of manufacturing experience
  • Low UV drift


  • Trace detection of nutrients (nitrite, nitrate, phosphate, iron) in seawater
  • Environmental and oceanographic monitoring
  • Drinking water analysis
  • Colored dissolved organic matter (CDOM)
  • Process control

UV/VIS/NIR absorbance spectroscopy is governed by Beer’s Law, where the absorbance signal is proportional to chemical concentration, light path length and the compound’s specific molar absorption coefficient. Typical optical pathlengths of cuvettes and flow cells are between 0.2cm and 10 cm. Longer pathlengths are difficult to achieve due to mechanical constraints. Liquid Waveguide Capillary Cells (LWCCs) fill this gap. LWCCs are fiber optic flow cells that combine an increased optical pathlength (10–500 cm) with small sample volumes ranging from 2.4 µL to about 3mL. Compared with a standard 1cm cell, a 1 mAU signal is enhanced one hundred fold with a 100 cm flowcell to 100 mAU, using WPI’s patented aqueous waveguide technology.*

They can be connected via optical fibers to a spectrophotometer with fiber optic capabilities. Ultra-sensitive absorbance measurements can be performed in the ultraviolet (UV), visible (VIS) and near-infrared (NIR) to detect low sample concentrations in a laboratory or process control environment.

Your sample is the core of a light guide

WPI’s Liquid Waveguide Capillary Cells are made of fused silica tubing with an outer coating of a low refractive index polymer. Your liquid sample is guided through the capillary and represents the core of the waveguide. The hydrophilic character of the fused silica capillary inner wall results in high signal stability and easy removal of air bubbles trapped in the flow cell. However, the transmission of the LWCC is mainly dependent on the intrinsic attenuation of the sample liquid.

Transmission into the NIR is possible when switiching water to methanol as a solvent.  


The LWCC-3xxx series of flow cells uses traditional HPLC type 10-32 coned port fittings with 1/32 inch tubing for liquid connection and 500 µm SMA fiber optic adapters for light input and output. The LWCC-4xxx series of flow cells uses 1/4-28 flangless flat bottom fittings with 0.125" tubing 600 µm SMA fiber optic adapters.

Liquid can be pumped into the flow cells using (in the simplest case) a sample injector (58006) and a ministar peristaltic pump (MINISTAR). The LWCC may be connected directly to a fluid injection analysis (FIA) system or to a gas segmented fluid injection analysis (GFIA) system via a debubbler.

For routing discrete measurements, WPI’s LWCC Injection system (89372) may be used when the sample is injected into a constant flow via an injection loop of 3–4 times the internal flow cell volume to ensure a stable baseline and avoid the introduction of micro air bubbles into the flow cell.

Example LWCC Measurement Setup  and Order code                                                  

TIDAS E Photo Diode Array Spectrometer UV/VIS (504718)           

Deuterium/Halogen Fiber Light Source (D4H)                               

Liquid Waveguide Capillary Cell, 10 cm pathlength(LWCC-4010)            

WVLUXUVIS-S-600-SMA x2 (505195)                                                   

*LWCC Start-up Kit (KITLWCC)                                                            

*includes two fiber cables, sample injector attachement, MiniStar Peristaltic Pump and Waveguide Cleaning Kit.

Accessory: LWCC Injection System(89372)  for flow analysis and simple fluid injection analysis (FIA) setups, 


LWCCs have been used in a variety of applications such as liquid chromatography, stopped-flow and colormetric detection, drinking water analysis, as well as environmental and oceanographic monitoring systems.

Related Patents

Micro Chemical Analysis Employing Flow Through Detectors, 1995, U.S. Patent No. 5,444,807.

Aqueous Fluid Core Waveguide, 1996, U.S. Patent No. 5,507,447.

Long Capillary Waveguide Raman Cell, 1997, U.S. Patent No. 5,604,587.

Chemical Sensing Techniques Employing Liquid-Core Optical Fibers, U.S. Patent No. 6,016,372


These spectra show the optimal detection limits for LWCCs of varying pathlength. 


An illustration of a complete WPI long pathlength liquid absorbance system for trace detection.

An illustration of a complete WPI long pathlength liquid absorbance system for trace detection. 


Typical LWCC setup includes an injection system, a pump, and a spectrophotometer.

  LWCC-3050 LWCC-3100 LWCC-3250 LWCC-3500  LWCC-4010 LWCC-4050 LWCC-4100
Optical Pathlength  50 cm  100 cm  250 cm  500 cm 10 cm 50 cm 100 cm
Internal Volume  125 µL  250 µL  625 µL  1250 µL 0.31 mL 1.57 mL 3.1 mL
Fiber Connection  500 µm SMA 600µm SMA
Transmission @254nm*  20  10  5  - 4 3 2
Transmission @540nm*  35  30  25  20 5 4 3
Noise [mAU]**  <0.1  <0.2  <0.1  <1.0 <0.1 <0.2 <0.5
Maximum Pressure  100 PSI
Wetted Material  PEEK, Fused Silica, PTFE
Liquid Input  Standard 10-32 Coned Port Fitting

* Referenced using coupled 500µm fibers        
** Measured using ASTM E685-93            
*** A one-meter waveguide of 550µm internal diameter requires approximately 1.5PSI for water flow of 1.0mL/min.


When comparing light throughput versus wavelength of three fiber optic cables, the greater the diameter of the cable, the better the LWCC performance up to 500µm which is the input diameter of the SMA connector.

Lefering, I., Röttgers, R., Utschig, C., & McKee, D. (2017). Uncertainty budgets for liquid waveguide CDOM absorption measurements. Applied Optics, 56(22), 6357.

Miranda, J. L. A., Mesquita, R. B. R., Nunes, A., Rangel, M., & Rangel, A. O. S. S. (2016). Iron speciation in natural waters by sequential injection analysis with a hexadentate 3-hydroxy-4-pyridinone chelator as chromogenic agent. Talanta, 148, 633–640.

Ehama, M., Hashihama, F., Kinouchi, S., Kanda, J., & Saito, H. (2016). Sensitive determination of total particulate phosphorus and particulate inorganic phosphorus in seawater using liquid waveguide spectrophotometry. Talanta, 153, 66–70.

Violaki, K., Fang, T., Mihalopoulos, N., Weber, R., & Nenes, A. (2016). Real-Time, Online Automated System for Measurement of Water-Soluble Reactive Phosphate Ions in Atmospheric Particles. Analytical Chemistry, 88(14), 7163–7170.

Ye, C., Zhou, X., Pu, D., Stutz, J., Festa, J., Spolaor, M., … Knote, C. (2016). Rapid cycling of reactive nitrogen in the marine boundary layer. Nature, 532(7600), 489–491.

Hashihama, F., Kanda, J., Tauchi, A., Kodama, T., Saito, H., & Furuya, K. (2015). Liquid waveguide spectrophotometric measurement of nanomolar ammonium in seawater based on the indophenol reaction with o -phenylphenol (OPP). Talanta, 143, 374–380.

Wise, M., Shilling, J., Imholt, F., & Caylor, R. (2015). Determination of the Optical Properties of Secondary Organic Aerosol Particles. Faculty Research. Retrieved from

Wise, M. E., Shilling, J., Caylor, R., Wise, M. E. ;, & Shilling, J. ; (2015). Determination of Total Peroxide Content in Secondary Organic Aerosol Particles. Retrieved from

Huang, Y., Yuan, D., Zhu, Y., & Feng, S. (2015). Real-Time Redox Speciation of Iron in Estuarine and Coastal Surface Waters. Environmental Science & Technology, 49(6), 3619–3627.

Liu, Y., & Lu, K. (2015). In situ Monitoring of Atmospheric Nitrous Acid based on Multi-pumping flow system and Liquid Waveguide Capillary Cell: development and field applications. EGU General Assembly 2015, Held 12-17 April, 2015 in Vienna, Austria.  Id.8298, 17.

Gil-Lozano, C., Losa-Adams, E., F.-Dávila, A., & Gago-Duport, L. (2014). Pyrite nanoparticles as a Fenton-like reagent for in situ remediation of organic pollutants. Beilstein Journal of Nanotechnology, 5(1), 855–864.

Ma, J., Yuan, D., & Byrne, R. H. (2014). Flow injection analysis of trace chromium (VI) in drinking water with a liquid waveguide capillary cell and spectrophotometric detection. Environmental Monitoring and Assessment, 186(1), 367–373.

Imholt, F. (2014). Optical Properties of Secondary Organic Aerosols Using Ultraviolet/Visible Spectroscopy. Math & Science Department (SURI). Retrieved from

Wise, M. E., Imholt, F., Caylor, R., Wise, M. E. ;, & Imholt, F. ; (2014). Composition and Optical Properties of Secondary Organic Aerosol Particles. Retrieved from

Catelani, T. A., Tóth, I. V., Lima, J. L. F. C., Pezza, L., & Pezza, H. R. (2014). A simple and rapid screening method for sulfonamides in honey using a flow injection system coupled to a liquid waveguide capillary cell. Talanta, 121, 281–287.

Wise, M. E., Imholt, F., & Caylor, R. (2014). Composition and Optical Properties of Secondary Organic Aerosol Particles. Retrieved from


Zhang, X., Lin, Y.-H., Surratt, J. D., & Weber, R. J. (2013). Sources, Composition and Absorption Ångström Exponent of Light-absorbing Organic Components in Aerosol Extracts from the Los Angeles Basin. Environmental Science & Technology, 47(8), 3685–3693.

Feng, S., Zhang, M., Huang, Y., Yuan, D., & Zhu, Y. (2013). Simultaneous determination of nanomolar nitrite and nitrate in seawater using reverse flow injection analysis coupled with a long path length liquid waveguide capillary cell. Talanta, 117, 456–462.

Sánchez-Quiles, D., Tovar-Sánchez, A., & Horstkotte, B. (2013). Titanium determination by multisyringe flow injection analysis system and a liquid waveguide capillary cell in solid and liquid environmental samples. Marine Pollution Bulletin, 76(1–2), 89–94.

Tóth, I. V, Santos, I. C., Azevedo, C. F. M., Fernandes, J. F. S., Páscoa, R. N. M. J., Mesquita, R. B. R., & Rangel, A. O. S. S. (2013). Flow-injection spectrophotometric determination of bromate in bottled drinking water samples using chlorpromazine reagent and a liquid waveguide capillary cell. Analytical Sciences : The International Journal of the Japan Society for Analytical Chemistry, 29(5), 563–570. Retrieved from

Zimmer, L. A., Cutter, G. A., & High, ". (2012). High Resolution Determination of Nanomolar Concentrations of Dissolved Reactive Phosphate in Ocean Surface Waters Using Long Path Liquid Waveguide Capillary Cells (LWCC) and Spectrometric Detection. OEAS Faculty Publications. Paper, 46.

Bianchi, F., Dommen, J., Mathot, S., & Baltensperger, U. (2012). On-line determination of ammonia at low pptv mixing ratios in the CLOUD chamber. Atmospheric Measurement Techniques, 5(7), 1719–1725.

Horstkotte, B., Alexovič, M., Maya, F., Duarte, C. M., Andruch, V., & Cerdá, V. (2012). Automatic determination of copper by in-syringe dispersive liquid–liquid microextraction of its bathocuproine-complex using long path-length spectrophotometric detection. Talanta, 99, 349–356.


Páscoa, R. N. M. J., Tóth, I. V., & Rangel, A. O. S. S. (2011). Spectrophotometric determination of zinc and copper in a multi-syringe flow injection analysis system using a liquid waveguide capillary cell: Application to natural waters. Talanta, 84(5), 1267–1272.

Zhang, X., Hecobian, A., Zheng, M., Frank, N. H., & Weber, R. J. (2010). Atmospheric Chemistry and Physics Biomass burning impact on PM 2.5 over the southeastern US during 2007: integrating chemically speciated FRM filter measurements, MODIS fire counts and PMF analysis. Atmos. Chem. Phys, 10, 6839–6853.

Hecobian, A., Zhang, X., Zheng, M., Frank, N., Edgerton, E. S., & Weber, R. J. (2010). Water-Soluble Organic Aerosol material and the light-absorption characteristics of aqueous extracts measured over the Southeastern United States. Atmospheric Chemistry and Physics, 10(13), 5965–5977.

Müller, M., Acker, M., Taut, S., & Bernhard, G. (2010). Complex formation of trivalent americium with salicylic acid at very low concentrations. Journal of Radioanalytical and Nuclear Chemistry, 286(1), 175–180.

Heller, M. I., & Croot, P. L. (2010). Kinetics of superoxide reactions with dissolved organic matter in tropical Atlantic surface waters near Cape Verde (TENATSO). Journal of Geophysical Research, 115(C12), C12038.

Hecobian, A., Zhang, X., Zheng, M., Frank, N., Edgerton, E. S., & Weber, R. J. (2010). Water-Soluble Organic Aerosol material and the light-absorption characteristics of aqueous extracts measured over the Southeastern United States. Atmos. Chem. Phys. Atmospheric Chemistry and Physics, 10, 5965–5977.

Rastogi, N., Oakes, M. M., Schauer, J. J., Shafer, M. M., Majestic, B. J., & Weber, R. J. (2009). New technique for online measurement of water-soluble Fe(II) in atmospheric aerosols. Environmental Science & Technology, 43(7), 2425–2430. Retrieved from

Amornthammarong, N., & Zhang, J.-Z. (2009). Liquid-waveguide spectrophotometric measurement of low silicate in natural waters. Talanta, 79(3), 621–626.

MA, J., YUAN, D., ZHANG, M., & LIANG, Y. (2009). Reverse flow injection analysis of nanomolar soluble reactive phosphorus in seawater with a long path length liquid waveguide capillary cell and spectrophotometric detection. Talanta, 78(1), 315–320.

Gimbert, L. J., Haygarth, P. M., & Worsfold, P. J. (2007). Determination of nanomolar concentrations of phosphate in natural waters using flow injection with a long path length liquid waveguide capillary cell and solid-state spectrophotometric detection. Talanta, 71(4), 1624–1628.

Belz, M. (2007). Simple and sensitive protein detection system using UV LEDs and liquid core waveguides. In T. Vo-Dinh, R. A. Lieberman, & G. Gauglitz (Eds.), Proceedings of SPIE (Vol. 6755, p. 675505). SPIE.

Gimbert, L. J., Haygarth, P. M., & Worsfold, P. J. (2007). Determination of nanomolar concentrations of phosphate in natural waters using flow injection with a long path length liquid waveguide capillary cell and solid-state spectrophotometric detection. Talanta, 71(4), 1624–1628.

Schofield, O., Kerfoot, J., Mahoney, K., Moline, M., Oliver, M., Lohrenz, S., & Kirkpatrick, G. (2006). Vertical migration of the toxic dinoflagellate Karenia brevis and the impact on ocean optical properties. Journal of Geophysical Research, 111(C6), C06009.

Li, Q. P., Zhang, J.-Z., Millero, F. J., & Hansell, D. A. (2005). Continuous colorimetric determination of trace ammonium in seawater with a long-path liquid waveguide capillary cell. Marine Chemistry, 96(1–2), 73–85.

Nozière, B. (2005). Organic reactions increasing the absorption index of atmospheric sulfuric acid aerosols. Geophysical Research Letters, 32(3), L03812.

Schofield, O., Bergmann, T., Oliver, M. J., Irwin, A., Kirkpatrick, G., Bissett, W. P., … Orrico, C. (2004). Inversion of spectral absorption in the optically complex coastal waters of the Mid-Atlantic Bight. Journal of Geophysical Research, 109(C12), C12S04.

United States. National Aeronautics and Space Administration. Office of Aero-Space Technology. (2002). Spinoff 2002. U.S. G.P.O.

Zhelyaskov, V. R., Liu, S., & Broderick, M. P. (2000). Analysis of nanoliter samples of electrolytes using a flow-through microfluorometer. Kidney International, 57(4), 1764–1769.

Calderilla, C., Avivar, J., Leal, L. O., & Cerdà, V. (n.d.). Multivariate optimisation of a rapid and simple automated method for bismuth determination in well water samples exploiting long path length spectrophotometry. Retrieved from

full-text. (n.d.).

Issues in Global Environment: Freshwater and Marine Environments: 2011 Edition - Google Books. (n.d.). Retrieved January 28, 2019, from 5WkGgASI4mAg&hl=en&sa=X&ved=2ahUKEwjJ3_NkJHgAhXqUd8KHWp6AzM4FBDoATACegQIBBAB#v=onepage&q=iron detection      

ScienceDirect (Online service). (n.d.). Talanta. Elsevier.

full-text. (n.d.).

Chen, Y., Huang, Y., Feng, S., & Yuan, D. (n.d.). Please do not adjust margins Solid phase extraction coupled with a liquid waveguide capillary cell for simultaneous redox speciation analysis of dissolved iron in estuarine and coastal waters. Anal. Methods, 1–8.

Cho, H. R., Jung, E. C., Park, K. K., Park, Y. J., & Kim, W. H. (n.d.). Speciation of U(VI) Using a 1.0-meter Liquid Waveguide Capillary Cell. Retrieved from

Self referencing LED detection system for spectroscopy applications. (n.d.).

Imholt, F. (n.d.). Optical properties of secondary organic aerosols using ultraviolet/visible spectroscopy.

Cruise report 64PE370 on RV Pelagia. (n.d.).

More Choices:
  1. LWCC Calibration Solution
    LWCC Calibration Solution

Long Pathlength Ensures Significant Increase of Sensitivity


©Copyright 2021. World Precision Instruments. All rights reserved.

Apply for Tax Exempt Status
WPI collects tax in AL, AZ, CA, CO, CT, DC, FL, GA, IL, IN, MA, ME, MD, MI, MN, MO, NC, NV, NJ, NY, OH, OK, PA, SC, TN, TX, VA, VT, WA and WI.
If you are shipping to one of these states, your order will incur tax and tax will not be refunded.