1. All Topics
  2. Testimonial
  3. Videos
  4. Virus Research
  5. Product Information

spectroscopy

  1. Ca2+ Detection in Muscle Tissue using Fluorescence Spectroscopy
    June 27, 2017
    The use of fluorescent probes in cell physiology has emerged as indispensable tool in the analysis of cell functioning over recent years. The physics underlying fluorescence is illustrated by the electronic-state diagram (so-called Jablonski diagram, see Fig. 1), showing the three-stage process to create the fluorescent signal (Excitation - Excited/State Lifetime - Fluorescence Emission) in a fluorophore/indicator and simplified described below. Fig. 1– Jablonski diagram illustrating the processes of fluorescence by absorption of higher photon energy by a fluorophore and subsequent emission of lower photon energy, resulting i
  2. Detection of organic compounds in water analysis
    June 27, 2017
    Absorption of light correlates to the energy of a photon that is taken-up by electrons of the substance atom. The electromagnetic energy is transformed into internal energy of the absorbent substance. The absorbance of a substance quantifies how much of the incident light is absorbed by it (instead of being reflected or refracted). Precise measurements of the absorbance at many wavelengths allow the identification of a substance via absorption spectroscopy, where a sample is illuminated from one side, and the intensity of the light that exits from the sample in every direction is measured (see Fig. 1). A few examples of absorption are ultraviolet–visible (UV-Vis) spectroscopy or infrared (IR) spectroscopy. Fig 1. Concept of absorbance spectroscopy using white light and o
  3. Using the Biofluorometer with Muscle Physiology Research systems
    June 27, 2017
    The use of fluorescence for sensing and imaging of the cellular signaling pathways has emerged as an indispensable tool in modern physiology, providing dynamic information of quantity and localization of the molecules of interest. Using appropriate indicator dyes, molecules alter their fluorescent characteristics in response to ion binding or membrane integration, so that the optical signal from the indicator can be measured to monitor the amplitude and the time course of various metal ions like Na+, K+, Mg2+ and Ca2+, as well as pH and membrane potential, in cellular compartments. A specific target molecule like Ca2+ is responsible for many physiological functions, such as neurotransmitter release, fertilization and ion channel functions. Studying the cellular channel functions is directly related to the transient increase in the myoplasmic free calcium concentration (Δ[Ca2+]), as
  4. Absorbance Detection
    June 27, 2017
    Absorption of light correlates to the energy of a photon that is taken-up by electrons of the substance atom. The electromagnetic energy is transformed into internal energy of the absorbent substance. The absorbance of a substance quantifies how much of the incident light is absorbed by it (instead of being reflected or refracted). Precise measurements of the absorbance at many wavelengths allow the identification of a substance via absorption spectroscopy, where a sample is illuminated from one side, and the intensity of the light that exits from the sample in every direction is measured (see Fig. 1). A few examples of absorption are ultraviolet–visible (UV-Vis) spectroscopy or infrared (IR) spectroscopy.
  5. Z-Dimensions Are Not Created Equal
    May 01, 2013
    Cuvettes come in a variety of shapes and sizes, but one of the most important specifications of a cuvette is its Z-dimension. The Z-dimension of an instrument (cuvette holder or spectrometer) is the distance from the bottom of the cuvette chamber floor to the center of its light beam (see image). A cuvette’s Z-dimension must match the Z-dimension of the instrument with which it will be used. Each manufacturer designs its instruments with a specific Z-dimension. Common Z-dimensions include 8.5 and 15mm, and sometimes 20mm. When purchasing small volume cuvettes, the correct Z-dimension becomes critical. Matching the Z-dimension of the cuvette to the Z-dimension of the instrument ensures that the light beam passes through the center of small samples.The table below shows the standard Z-dimension of the spectrometer sample compartments for many manufacturers.
©Copyright 2020. World Precision Instruments. All rights reserved.

Apply for Tax Exempt Status
WPI collects tax in AL, AZ, CA, CO, CT, DC, FL, GA, IL, IN, MA, ME, MD, MI, MN, MO, NC, NV, NJ, NY, OH, OK, PA, SC, TN, TX, VA, VT, WA and WI